On reactions of triazinones: Synthesis of new 5-arylidene-4,5-dihydro-1,2,4-triazin-6-ones

Hany M. Dalloul * and Ali Z. Al-Shorafa

Department of Chemistry, Faculty of Science, Al-Aqsa University of Gaza, P.O.Box 4051, Gaza 76888, PALESTINE

(Received October 22, 2008; Revised February 18, 2009; Accepted March 5, 2009)

Abstract: 5-Benzylidene-, 5-(furan-2-ylmethylene)- and 5-(thiophen-2-ylmethylene)-4,5-dihydro-1,2,4-triazin-6-ones have been synthesized from the reaction of 4,5-dihydro-1,2,4-triazin-6-ones with appropriate aromatic aldehydes. All the products have been characterized by elemental analysis and their spectral data.

Keywords: Cyclocondensation, aromatic aldehydes; 4,5-dihydro-1,2,4-triazin-6-ones.

1. Introduction

The chemistry of triazinone derivatives have been the subject of much interest in recent years due to use of such ring system as the core structure in many heterocyclic compounds covering wide range of pharmacological applications.1-9 Recently, 1,2,4-triazinone derivatives have gained great attention as ligands to transition metals. The reaction of 1,3,5-trisubstituted 4,5-dihydro-1,2,4-triazine oximes with metal acetates afforded different complexes according to the used reagent and conditions.10-13 Quite recently, we have reported the synthesis of different 1,2,4-triazinones derivatives employing amidrazones and α-halo acid esters.14 Cyclocondensation reactions of nitrilimines with 2-hydrazinoacetate or with α-amino esters represent an important synthetic route to prepare substituted 1,2,4-triazin-6-ones.7,15,16 In continuation of our work on the reaction of five and six membered aza heterocyclic compounds, we wish to report the reactivity of 3-aryloyl-1-aryl-4,5-dihydro-1,2,4-triazin-6-ones 2a-x toward aromatic aldehydes.

2. Results and Discussion

Substituted 4,5-dihydro-1,2,4-triazin-6-ones 2a-x employed in this study were prepared by direct interaction of hydrazonoyl halides 1A, nitrilimines precursors, with α-amino esters in presence of

* Corresponding author: E-mail hanydalool@yahoo.com
reactions of triazinones

triethylamine as a base or by treatment of amidrazones with α-haloesters. Condensation of these triazinones with aromatic aldehydes (benzaldehyde, 2-furaldehyde and thiophene-2-carboxaldehyde) in presence of potassium acetate/acetic acid at refluxing temperature afforded the corresponding 5-arylidene-4,5-dihydro-1,2,4-triazin-6-ones (Scheme 1) in moderate yields. The assignment of structures of obtained compounds is based on their analytical and spectral data.

Scheme 1. Synthetic pathway for the preparation of compounds 4a-x.

The IR spectra of the title compounds 4a-x in KBr showed strong absorption band in the 3380-3320 cm⁻¹ region corresponding to NH of the ring. The absorption bands of the aroyl carbonyl groups appeared in the 1690-1640 cm⁻¹ region, and a lactam C=O band in the 1680-1670 cm⁻¹ region. The mass spectra of the synthesized triazinones displayed the correct molecular ions (M⁺) in accordance with the proposed structures. Their main fragmentation was similar to the reported type. The base peak for compounds containing benzylidene moiety was (M-117), for compounds containing furan-2-ylmethylene moiety was (M-108), and for compounds containing thiophen-2-ylmethylene moiety was (M-124). The ¹H-NMR spectra of the title compounds 4a-x showed the disappearance of the methylene protons (4.2-4.0 ppm) at C-5. Instead the methine proton (=CHAr') appeared as singlet in the range of 6.8-6.7 ppm. The signal at about 6.2 ppm was attributed to N-H proton of the triazinone ring. The ¹³C-NMR spectra of these adducts displayed the characteristic signals of the...
different carbons of suggested structures. The signal of carbonyl carbon of lactam (C=O of ring) appeared in the range of 162-160 ppm, and that of methine carbon (=CHAr') resonated in the range of 112-109 ppm. The signal at about 139 ppm, was attributed to C=N of the triazinone ring. The detailed 13C-NMR data is shown in the experimental part.

3. Conclusion

The condensation of 4,5-dihydro-1,2,4-triazin-6-ones with appropriate aromatic aldehydes gave 5-arylidene-4,5-dihydro-1,2,4-triazin-6-ones in a yield of 50-65%.

4. Experimental

Melting points were determined on a Stuart Electrothermal Apparatus and are uncorrected. The IR spectra were obtained by using Satellite 3000 Mid infrared spectrophotometer in potassium bromide pellets. 1H and 13C NMR spectra were recorded on a Bruker spectrometer (400.13 MHz) at room temperature in DMSO-d_6, using tetramethylsilane (TMS) as internal reference and the chemical shifts (δ) were reported in ppm downfield from TMS. The electron impact (EI) mass spectra for selected compounds (4a,c,f,h,i,k,m,o,q,s,u,w) were run on Shimadzu GCMS-QP1000 EX spectrometer with an ionizing potential of 70 eV. Elemental analysis performed at Cairo University, Egypt and the results agreed with the calculated values within experimental errors. The 3-aryl-1-aryl-4,5-dihydro-1,2,4-triazin-6-ones 2a-x were prepared according to previous described methods. Benzaldehyde, 2-furaldehyde and thiophene-2-carboxaldehyde were purchased from Avocado Research Chemicals, England, and used without further purification.

4.1. General method for the synthesis of adducts (4a-x):

A compounds 2a-x (0.01mol), appropriate aldehyde 3 (0.01 mol) and anhydrous potassium acetate (0.01 mol) were dissolved in glacial acetic acid (5 ml) at room temperature. The reaction mixture was heated to reflux temperature for 2-3h with efficient stirring. The reaction was monitored by thin layer chromatography (TLC) analysis until all the aldehyde had reacted. Upon cooling, the mixture gave a precipitate which was collected, washed several times with water and recrystallized from ethanol.

The following compounds were synthesized using this method:

3-Acetyl-5-benzylidene-1-phenyl-4,5-dihydro-1,2,4-triazin-6-one (4a):

Yield: 65%; mp: 208-210 °C (from EtOH); 1H NMR (DMSO-d_6) (δ/ppm): 7.78-6.95 (10H, m, Ar-H), 6.75 (1H, s, CH), 6.23 (1H, s, NH), 2.53 (3H, s, CH$_3$); 13C NMR (DMSO-d_6) (δ/ppm): 189.5 (C=O), 160.3 (lactam C=O), 139.2 (C=N), 142.4, 137.0, 136.7, 129.5, 129.2, 128.8, 127.2, 125.6, 116.0, 111.6, 26.6 (CH$_3$); IR (ν/cm$^{-1}$): 3330 (N-H), 1697 (CH$_3$C=O), 1675 (lactam C=O); MS: m/z = 305 [M$^+$]; Analysis for C$_{18}$H$_{15}$N$_3$O$_2$ (Mw 305.34): calcd. C, 70.81; H, 4.95; N, 13.76; found. C, 70.60; H, 5.10; N, 13.60.

3-Acetyl-5-(furan-2-ylmethylene)-1-phenyl-4,5-dihydro-1,2,4-triazin-6-one (4b):

Yield: 61%; mp: 149-151 °C (from EtOH); 1H NMR (DMSO-d_6) (δ/ppm): 8.20-7.15 (8H, m, Ar-H), 6.72 (1H, s, CH), 6.22 (1H, s, NH), 2.56 (3H, s, CH$_3$); 13C NMR (DMSO-d_6) (δ/ppm): 189.7 (C=O), 160.3 (lactam C=O), 139.2 (C=N), 142.0, 134.6, 133.8, 132.2, 131.3, 129.2, 128.3, 125.6, 116.0, 110.5, 26.7 (CH$_3$); IR (ν/cm$^{-1}$): 3325 (N-H), 1695 (CH$_3$C=O), 1675 (lactam C=O); Analysis for C$_{16}$H$_{13}$N$_3$O$_2$ (Mw 305.30): calcd. C, 70.08; H, 4.44; N, 14.23; found. C, 66.20; H, 4.30; N, 14.40.
3-Acetyl-5-benzylidene-1-(4-chlorophenyl)-4,5-dihydro-1,2,4-triazin-6-one (4c):
Yield: 55%; mp: 198-200 °C (from EtOH);
1H NMR (DMSO-d_6) (δ/ppm): 8.21-7.10 (9H, m, Ar-H), 6.70 (1H, s, CH), 6.20 (1H, s, NH), 2.58 (3H, s, CH$_3$);
13C NMR (DMSO-d_6) (δ/ppm): 189.7 (C=O), 160.5 (lactam C=O), 139.6 (C=N), 141.6, 137.8, 136.4, 135.2, 130.9, 129.7, 129.2, 124.5, 117.2, 111.5, 26.6 (CH$_3$); IR (ν/cm$^{-1}$): 3340 (N-H), 1696 (CH$_3$C=O), 1675 (lactam C=O); Analysis for C$_{18}$H$_{14}$BrN$_3$O$_2$ (Mw 384.24): calcd. C, 56.27; H, 3.67; N, 10.94; found. C, 56.40; H, 3.50; N, 11.10.

3-Acetyl-5-benzylidene-1-(4-bromophenyl)-4,5-dihydro-1,2,4-triazin-6-one (4e):
Yield: 55%; mp: 198-200 °C (from EtOH);
1H NMR (DMSO-d_6) (δ/ppm): 8.21-7.10 (9H, m, Ar-H), 6.70 (1H, s, CH), 6.20 (1H, s, NH), 2.58 (3H, s, CH$_3$);
13C NMR (DMSO-d_6) (δ/ppm): 189.7 (C=O), 160.5 (lactam C=O), 139.6 (C=N), 141.6, 137.8, 136.4, 135.2, 130.9, 129.7, 129.2, 124.5, 117.2, 111.5, 26.6 (CH$_3$); IR (ν/cm$^{-1}$): 3340 (N-H), 1696 (CH$_3$C=O), 1675 (lactam C=O); Analysis for C$_{18}$H$_{14}$BrN$_3$O$_2$ (Mw 384.24): calcd. C, 56.27; H, 3.67; N, 10.94; found. C, 56.40; H, 3.50; N, 11.10.

3-Acetyl-5-benzylidene-1-(4-chlorophenyl)-4,5-dihydro-1,2,4-triazin-6-one (4b):
Yield: 63%; mp: 212-214 °C (from EtOH);
1H NMR (DMSO-d_6) (δ/ppm): 7.82-7.11 (9H, m, Ar-H), 6.80 (1H, s, CH), 6.25 (1H, s, NH), 2.55 (3H, s, CH$_3$);
13C NMR (DMSO-d_6) (δ/ppm): 189.6 (C=O), 160.7 (lactam C=O), 139.4 (C=N), 142.3, 136.9, 134.6, 130.9, 129.2, 128.7, 128.3, 125.6, 116.8, 111.8, 26.6 (CH$_3$); IR (ν/cm$^{-1}$): 3330 (N-H), 1698 (CH$_3$C=O), 1680 (lactam C=O); MS: m/z = 339/341 [M$^+$]; Analysis for C$_{18}$H$_{14}$ClN$_3$O$_2$ (Mw 339.78): calcd. C, 63.63; H, 4.15; N, 12.37; found. C, 63.50; H, 4.20; N, 12.40.

3-Benzoyl-5-benzylidene-1-(4-chlorophenyl)-4,5-dihydro-1,2,4-triazin-6-one (4g):
Yield: 54%; mp: 211-213 °C (from EtOH);
1H NMR (DMSO-d_6) (δ/ppm): 8.20-7.11 (14H, m, Ar-H), 6.65 (1H, s, CH), 6.18 (1H, s, NH), 2.57 (3H, s, CH$_3$);
13C NMR (DMSO-d_6) (δ/ppm): 185.4 (C=O), 162.2 (lactam C=O), 139.2 (C=N), 141.8, 138.2, 134.8, 133.7, 132.4, 131.3, 129.4, 129.1, 128.7, 128.3, 126.7, 124.6, 119.5, 111.9; IR (ν/cm$^{-1}$): 3370 (N-H), 1678 (lactam C=O), 1650 (C=O); Analysis for C$_{23}$H$_{14}$ClN$_3$O$_2$ (Mw 401.86): calcd. C, 68.75; H, 4.01; N, 10.46; found. C, 68.90; H, 3.90; N, 10.40.

3-Benzoyl-5-benzylidene-1-(4-chlorophenyl)-4,5-dihydro-1,2,4-triazin-6-one (4h):
Yield: 60%; mp: 158-160 °C (from EtOH);
1H NMR (DMSO-d_6) (δ/ppm): 8.22-7.18 (12H, m, Ar-H), 6.67 (1H, s, CH), 6.20 (1H, s, NH);
13C NMR (DMSO-d_6) (δ/ppm): 185.5 (C=O), 162.1 (lactam C=O), 139.1 (C=N), 141.9, 138.1, 134.6, 133.7, 132.2, 131.1, 129.3, 129.1 128.7, 128.2, 126.7, 124.8, 119.4, 110.8; IR (ν/cm$^{-1}$): 3371 (N-H), 1676 (lactam C=O), 1653 (C=O); MS: m/z = 391/393 [M$^+$]; Analysis for C$_{21}$H$_{14}$ClN$_3$O$_2$ (Mw 391.82): calcd. C, 64.38; H, 3.60; N, 10.72; found. C, 64.20; H, 3.40; N, 10.90.
5-Benzylidene-1-phenyl-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4i):
Yield: 55%; mp: 218-220 °C (from EtOH); ¹H NMR (DMSO-d₆) (δ/ppm): 7.62-7.12 (15H, m, Ar-H), 6.71 (1H, s, CH), 6.31 (1H, s, NH); ¹³C NMR (DMSO-d₆) (δ/ppm): 160.3 (lactam C=O), 157.3 (amide C=O), 139.0 (C=N), 140.8, 138.7, 137.5, 136.9, 132.3, 129.5, 129.2, 128.8, 127.3, 125.5, 125.1, 123.9, 119.7, 112.1; IR (ν/cm⁻¹): 3363, 3258 (N-H), 1679 (lactam C=O), 1655 (amide C=O); MS: m/z = 382 [M⁺]; Analysis for C₂₃H₁₈N₄O₂ (Mw 382.43): calcd. C, 67.73; H, 4.33; N, 14.42; found. C, 67.90; H, 4.20; N, 14.90.

5-(furan-2-ylmethylene)-1-phenyl-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4j):
Yield: 51%; mp: 140-142 °C (from EtOH); ¹H NMR (DMSO-d₆) (δ/ppm): 7.78-7.21 (13H, m, Ar-H), 6.73 (1H, s, CH), 6.33 (1H, s, NH); ¹³C NMR (DMSO-d₆) (δ/ppm): 160.6 (lactam C=O), 157.0 (amide C=O), 138.7 (C=N), 140.9, 136.2, 135.1, 133.9, 130.5, 129.4, 129.0, 128.7, 128.2, 127.1, 125.0, 123.5, 119.8, 110.9; IR (ν/cm⁻¹): 3365, 3260 (N-H), 1676 (lactam C=O), 1650 (amide C=O); Analysis for C₂₁H₁₆N₄O₃ (Mw 372.39): calcd. C, 67.73; H, 4.33; N, 15.05; found. C, 67.90; H, 4.20; N, 14.90.

1-Phenyl-3-phenylaminocarbonyl-5-(thiophen-2-ylmethylene)-4,5-dihydro-1,2,4-triazin-6-one (4k):
Yield: 57%; mp: 170-172 °C (from EtOH); ¹H NMR (DMSO-d₆) (δ/ppm): 7.76-7.15 (13H, m, Ar-H), 6.70 (1H, s, CH), 6.35 (1H, s, NH); ¹³C NMR (DMSO-d₆) (δ/ppm): 160.8 (lactam C=O), 157.2 (amide C=O), 139.1 (C=N), 140.8, 136.6, 135.4, 134.7, 130.3, 129.6, 129.1, 128.5, 128.1, 127.5, 125.3, 123.7, 119.8, 111.3; IR (ν/cm⁻¹): 3365, 3255 (N-H), 1678 (lactam C=O), 1652 (amide C=O); MS: m/z = 388 [M⁺]; Analysis for C₂₁H₁₆N₄O₃ (Mw 388.45): calcd. C, 64.93; H, 4.15; N, 14.42; found. C, 65.10; H, 4.30; N, 14.30.

5-Benzylidene-1-(4-chlorophenyl)-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4l):
Yield: 65%; mp: 201-203 °C (from EtOH); ¹H NMR (DMSO-d₆) (δ/ppm): 7.55-7.13 (14H, m, Ar-H), 6.72 (1H, s, CH), 6.35 (1H, s, NH); ¹³C NMR (DMSO-d₆) (δ/ppm): 160.7 (lactam C=O), 156.6 (amide C=O), 138.9 (C=N), 140.6, 138.8, 136.4, 135.1, 132.5, 130.4, 129.3, 128.9, 128.7, 127.6, 126.2, 125.2, 119.9, 112.3; IR (ν/cm⁻¹): 3362, 3257 (N-H), 1680 (lactam C=O), 1660 (amide C=O); Analysis for C₂₁H₁₇ClN₄O₂ (Mw 416.87): calcd. C, 66.27; H, 4.11; N, 13.44; found. C, 66.50; H, 3.90; N, 13.20.

1-(4-Chlorophenyl)-5-(furan-2-ylmethylene)-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4m):
Yield: 59%; mp: 190-192 °C (from EtOH); ¹H NMR (DMSO-d₆) (δ/ppm): 7.60-7.16 (12H, m, Ar-H), 6.76 (1H, s, CH), 6.34 (1H, s, NH); ¹³C NMR (DMSO-d₆) (δ/ppm): 160.6 (lactam C=O), 156.8 (amide C=O), 139.0 (C=N), 140.4, 138.6, 136.2, 133.8, 132.3, 130.5, 129.1, 128.4, 127.2, 126.7, 125.7, 123.1, 119.7, 110.9; IR (ν/cm⁻¹): 3370, 3265 (N-H), 1682 (lactam C=O), 1665 (amide C=O); MS: m/z = 406/408 [M⁺]; Analysis for C₂₁H₁₅ClN₄O₂ (Mw 406.83): calcd. C, 62.00; H, 3.72; N, 13.77; found. C, 61.80; H, 3.60; N, 13.90.

1-(4-Chlorophenyl)-3-phenylaminocarbonyl-5-(thiophen-2-ylmethylene)-4,5-dihydro-1,2,4-triazin-6-one (4n):
Yield: 53%; mp: 192-194 °C (from EtOH); ¹H NMR (DMSO-d₆) (δ/ppm): 7.68-7.20 (12H, m, Ar-H), 6.74 (1H, s, CH), 6.37 (1H, s, NH); ¹³C NMR (DMSO-d₆) (δ/ppm): 160.6 (lactam C=O), 156.7 (amide C=O), 139.1 (C=N), 140.6, 138.7, 136.3, 134.1, 132.5, 130.3, 129.2,
reactions of triazinones

128.4, 127.8, 126.7, 125.2, 123.7, 119.8, 111.5; IR (\(\nu/cm^{-1}\)): 3369, 3258 (N-H), 1679 (lactam \(\text{C}=\text{O}\)), 1660 (amide \(\text{C}=\text{O}\)); Analysis for \(\text{C}_2\text{H}_15\text{ClN}_4\text{O}_2\) (Mw 422.90): calcd. C, 59.64; H, 3.58; N, 13.25; found. C, 59.50; H, 3.40; N, 13.40.

5-Benzylidene-1-(4-bromophenyl)-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4o):
Yield: 56%; mp: 200-202 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 7.58-7.15 (14H, m, Ar-H), 6.66 (1H, s, CH), 6.25 (1H, s, NH); \(^{13}\)C NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 160.8 (lactam \(\text{C}=\text{O}\)), 158.0 (amide \(\text{C}=\text{O}\)), 139.7 (C=N), 140.0, 137.5, 136.4, 135.2, 131.0, 129.7, 128.7, 128.2, 126.6, 125.2, 124.5, 121.0, 118.5, 112.1; IR (\(\nu/cm^{-1}\)): 3360, 3246 (N-H), 1682 (lactam \(\text{C}=\text{O}\)), 1650 (amide \(\text{C}=\text{O}\)); MS: m/z = 461/463 [\(\text{M}^+\)]; Analysis for \(\text{C}_{23}\text{H}_{17}\text{BrN}_4\text{O}_3\) (Mw 461.32): calcd. C, 59.88; H, 3.71; N, 12.14; found. C, 60.10; H, 3.80; N, 12.00.

1-(4-Bromophenyl)-5-(furan-2-ylmethylene)-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4p):
Yield: 51%; mp: 188-190 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 7.55-7.13 (12H, m, Ar-H), 6.65 (1H, s, CH), 6.24 (1H, s, NH); \(^{13}\)C NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 160.9 (lactam \(\text{C}=\text{O}\)), 158.2 (amide \(\text{C}=\text{O}\)), 139.8 (C=N), 140.3, 137.7, 136.4, 134.2, 130.8, 129.3, 128.5, 127.6, 126.8, 124.3, 123.5, 120.9, 118.4, 110.3; IR (\(\nu/cm^{-1}\)): 3366, 3249 (N-H), 1683 (lactam \(\text{C}=\text{O}\)), 1655 (amide \(\text{C}=\text{O}\)); Analysis for \(\text{C}_{21}\text{H}_{15}\text{BrN}_4\text{O}_3\) (Mw 451.28): calcd. C, 55.89; H, 3.35; N, 12.42; found. C, 55.70; H, 3.20; N, 12.60.

1-(4-Bromophenyl)-3-phenylaminocarbonyl-5-(thiophen-2-ylmethylene)-4,5-dihydro-1,2,4-triazin-6-one (4q):
Yield: 58%; mp: 150-152 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 7.58-7.14 (12H, m, Ar-H), 6.68 (1H, s, CH), 6.21 (1H, s, NH); \(^{13}\)C NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 160.7 (lactam \(\text{C}=\text{O}\)), 158.1 (amide \(\text{C}=\text{O}\)), 139.7 (C=N), 140.1, 137.4, 136.9, 133.9, 130.9, 129.6, 128.5, 127.8, 126.6, 124.1, 123.7, 120.5, 118.5, 111.2; IR (\(\nu/cm^{-1}\)): 3363, 3245 (N-H), 1681 (lactam \(\text{C}=\text{O}\)), 1650 (amide \(\text{C}=\text{O}\)); MS: m/z = 467/469 [\(\text{M}^+\)]; Analysis for \(\text{C}_{21}\text{H}_{15}\text{BrN}_4\text{O}_2\) (Mw 467.35): calcd. C, 53.97; H, 3.24; N, 11.99; found. C, 54.10; H, 3.10; N, 12.10.

5-Benzylidene-1-(4-fluorophenyl)-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4r):
Yield: 55%; mp: 243-245 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 7.83-7.16 (14H, m, Ar-H), 6.80 (1H, s, CH), 6.39 (1H, s, NH); \(^{13}\)C NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 161.3 (lactam \(\text{C}=\text{O}\)), 157.3 (amide \(\text{C}=\text{O}\)), 139.3 (C=N), 140.0, 137.5, 136.9, 129.7, 128.8, 128.6, 128.2, 126.8, 124.4, 120.9, 125.2, 125.0, 119.8, 112.3; IR (\(\nu/cm^{-1}\)): 3347, 3240 (N-H), 1682 (lactam \(\text{C}=\text{O}\)), 1660 (amide \(\text{C}=\text{O}\)); Analysis for \(\text{C}_{23}\text{H}_{17}\text{FN}_4\text{O}_2\) (Mw 400.42): calcd. C, 68.99; H, 4.28; N, 13.99; found. C, 69.20; H, 4.40; N, 13.10.

1-(4-Fluorophenyl)-5-(furan-2-ylmethylene)-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4s):
Yield: 54%; mp: 187-189 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 7.80-7.11 (12H, m, Ar-H), 6.81 (1H, s, CH), 6.40 (1H, s, NH); \(^{13}\)C NMR (DMSO-d\(_6\)) (\(\delta/ppm\)): 161.2 (lactam \(\text{C}=\text{O}\)), 157.3 (amide \(\text{C}=\text{O}\)), 139.2 (C=N), 140.2, 137.5, 136.9, 129.7, 128.8, 128.6, 128.2, 126.8, 124.4, 120.9, 125.2, 125.0, 119.8, 112.3; IR (\(\nu/cm^{-1}\)): 3342, 3232 (N-H), 1682 (lactam \(\text{C}=\text{O}\)), 1660 (amide \(\text{C}=\text{O}\)); MS: m/z = 390 [\(\text{M}^+\)]; Analysis for \(\text{C}_{21}\text{H}_{15}\text{FN}_4\text{O}_3\) (Mw 390.38): calcd. C, 64.89; H, 4.28; N, 13.99; found. C, 64.61; H, 3.87; N, 14.35; found. C, 64.40; H, 4.00; N, 14.40.
5-Benzylidene-1-(4-methylphenyl)-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4t):
Yield: 52%; m.p. 200-203 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\) (δ/ppm): 7.75-7.12 (14H, m, Ar-H), 6.76 (1H, s, CH), 6.35 (1H, s, NH), 2.25 (3H, s, CH\(_3\)); \(^13\)C NMR (DMSO-d\(_6\) (δ/ppm): 161.4 (lactam C=O), 157.7 (amide C=O), 139.6 (C=N), 140.9, 138.7, 138.1, 136.9, 132.6, 129.5, 128.8, 127.3, 125.3, 125.1, 123.7, 119.3, 111.9, 20.7 (CH\(_3\)); IR (ν/cm\(^{-1}\)): 3356, 3233 (N-H), 1682 (lactam C=O), 1656 (amide C=O); Analysis for C\(_{24}\)H\(_{20}\)N\(_4\)O\(_2\) (Mw 396.45): calcd. C, 72.71; H, 5.08; N, 14.13; found. C, 72.60; H, 5.10; N, 14.30.

5-(furan-2-ylmethylene)-1-(4-methylphenyl)-3-phenylaminocarbonyl-4,5-dihydro-1,2,4-triazin-6-one (4u):
Yield: 58%; mp: 145-147 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\) (δ/ppm): 7.76-7.16 (12H, m, Ar-H), 6.72 (1H, s, CH), 6.33 (1H, s, NH), 2.23 (3H, s, CH\(_3\)); \(^13\)C NMR (DMSO-d\(_6\) (δ/ppm): 161.3 (lactam C=O), 157.8 (amide C=O), 139.7 (C=N), 141.2, 138.7, 138.1, 136.9, 132.6, 129.5, 129.2, 128.8, 127.3, 125.3, 125.1, 124.63, 119.8, 110.9, 20.6 (CH\(_3\)); IR (ν/cm\(^{-1}\)): 3350, 3247 (N-H), 1682 (lactam C=O), 1651 (amide C=O); MS: m/z = 386 [M\(^+\)]; Analysis for C\(_{22}\)H\(_{18}\)N\(_4\)O\(_3\) (Mw 386.41): calcd. C, 68.38; H, 4.70; N, 14.50; found. C, 68.60; H, 4.60; N, 14.40.

1-(4-Methylphenyl)-3-phenylaminocarbonyl-5-(thiophen-2-ylmethylene)-4,5-dihydro-1,2,4-triazin-6-one (4v):
Yield: 50%; mp: 175-177 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\) (δ/ppm): 7.78-7.24 (12H, m, Ar-H), 6.75 (1H, s, CH), 6.35 (1H, s, NH), 2.22 (3H, s, CH\(_3\)); \(^13\)C NMR (DMSO-d\(_6\) (δ/ppm): 161.3 (lactam C=O), 157.7 (amide C=O), 139.3 (C=N), 140.8, 138.7, 138.1, 136.9, 132.6, 129.5, 129.2, 128.8, 127.3, 125.3, 125.1, 124.63, 119.7, 111.4, 20.7 (CH\(_3\)); IR (ν/cm\(^{-1}\)): 3353, 3239 (N-H), 1682 (lactam C=O), 1657 (amide C=O); MS: m/z = 402 [M\(^+\)]; Analysis for C\(_{22}\)H\(_{18}\)N\(_4\)O\(_2\)S (Mw 402.48): calcd. C, 65.65; H, 4.51; N, 13.92; found. C, 65.50; H, 4.70; N, 14.40.

1-(4-Chlorophenyl)-5-(furan-2-ylmethylene)-3-(2-naphthoyl)-4,5-dihydro-1,2,4-triazin-6-one (4w):
Yield: 61%; mp: 228-230 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\) (δ/ppm): 8.95-7.15 (14H, m, Ar-H), 6.71 (1H, s, CH), 6.30 (1H, s, NH), 2.22 (3H, s, CH\(_3\)); \(^13\)C NMR (DMSO-d\(_6\) (δ/ppm): 185.0 (C=O), 160.7 (lactam C=O), 140.7 (C=N), 142.80, 138.7, 138.1, 136.9, 132.6, 129.5, 129.2, 128.8, 127.3, 125.3, 125.1, 123.6, 119.7, 111.4, 20.7 (CH\(_3\)); IR (ν/cm\(^{-1}\)): 3355, 3247 (N-H), 1682 (lactam C=O), 1651 (amide C=O); MS: m/z = 386 [M\(^+\)]; Analysis for C\(_{22}\)H\(_{18}\)ClN\(_3\)O\(_3\) (Mw 441.88): calcd. C, 67.96; H, 3.65; N, 9.51; found. C, 68.10; H, 3.50; N, 9.40.

1-(4-Chlorophenyl)-3-(2-naphthoyl)-5-(thiophen-2-ylmethylene)-4,5-dihydro-1,2,4-triazin-6-one (4x):
Yield: 56%; mp: 168-170 °C (from EtOH); \(^1\)H NMR (DMSO-d\(_6\) (δ/ppm): 8.96-7.17 (14H, m, Ar-H), 6.71 (1H, s, CH), 6.30 (1H, s, NH); \(^13\)C NMR (DMSO-d\(_6\) (δ/ppm): 184.9 (C=O), 160.8 (lactam C=O), 140.6 (C=N), 142.8, 138.5, 137.6, 135.8, 134.0, 132.2, 132.5, 129.9, 129.1, 128.9, 128.6, 128.2, 127.8, 127.5, 126.9, 126.1, 125.5, 125.1, 119.4, 109.8; IR (ν/cm\(^{-1}\)): 3350 (N-H), 1682 (lactam C=O), 1645 (C=O); MS: m/z = 441/443 [M\(^+\)]; Analysis for C\(_{25}\)H\(_{16}\)ClN\(_3\)O\(_2\)S (Mw 443.39): calcd. C, 65.57; H, 3.52; N, 9.18; found. C, 65.30; H, 3.70; N, 9.00.
reactions of triazinones

References

ACG publications

© 2009 Reproduction is free for scientific studies