Org.Commun. 4:2 (2011) 9-15

A Facile, Choline Chloride/Urea Catalyzed Solid Phase Synthesis of Coumarins via Knoevenagel Condensation

Hosanagara N. Harishkumar¹, Kittappa M. Mahadevan^{1*}, Hittalumane C. Kiran Kumar¹, and Nayak D. Satyanarayan²

 ^{1,} Department of Post Graduate Studies and Research in Chemistry, School of Chemical Sciences Kuvempu University, Shankaraghatta, Karnataka 577 451, India.
² Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Center, Kadur-577548, Karnataka, India.

Table of Contents	Page
1: General Information	2
2: Optimization Table	3-4
3: Spectral data of reported compounds	5-8
4: Spectra of reported compounds	9-56

1: General Information

All the melting points were recorded in open capillaries. The purity of the compounds was monitored by TLC on silica gel and was purified by recrystallization with ethonal.¹H NMR spectra were recorded on a Bruker-400MHz spectrometer using TMS as an internal standard. IR spectra were obtained using a FTS-135 spectrometer instrument. Mass spectra was recorded on a JEOL SX 102/DA-6000 (10 kV) FAB mass spectrometer.

2: Optimization Table

Er	try	R ¹	\mathbf{R}^2	R ³	\mathbf{R}^4	Yield (%)	Mp(obs)/(litr) ^o C
	Ba	Н	Н	Н	Н	98	191-192/193-194 ²²
	ßb	Cl	Н	Н	Н	97	118-120/120-121 ²²
	3c	Br	Н	Н	Н	93	195-198/195-196 ²²
	3d	Н	Et_2N	Н	Н	96	243-248/222-224 ²²
	Be	Η	ОН	Н	Н	97	259-262/261-263 ²²
	3f	Н	Morpholine	Н	Н	96	243-244
	ßg	Н	CH(CH ₃) ₂	Н	Н	95	106-109
	ßh	Н	Н	Н	OCH ₃	97	215-216/2187
	3i	CH ₃	Н	Н	Н	95	163-164/166 ⁷
	3j	Н	OCH ₃	Н	Н	96	190-195/192-194 ²²
	3k	Н	F	Н	Н	98	200-203

Table1. Reaction yield and melting points of newly synthesized compounds 3a-k.

Entry	R ¹	\mathbf{R}^2	R ⁴	\mathbb{R}^3	Yield (%)	Mp(obs)/(litr) °C
			T.		0.6	101 100/10 123
5a	Н	Н	Et	СООМе	96	121-122/124-5
5b	Н	Н	Et	COOEt	95	92-93/93-94 ²³
5c	Н	Н	Et	CN	98	180-182/184-185 ²³
5d	Н	Et_2N	Et	COOMe	94	149-152/151-153 ²³
5e	Н	Et_2N	Et	COOEt	98	80-82/77-78 ²³
5f	Н	Et_2N	Et	CN	98	225-226/229 ²³
5g	Н	CH(CH ₃) ₂	Et	CN	92	125-127
5h	Н	Morpholine	Et	CN	96	262-264
5i	Н	OMe	Et	CN	95	221-223/224-226 ²³
5j	Н	Cl	Et	CN	98	189-192

Table 2. Reaction yield and melting points of newly synthesized compounds 5a-j.

3: Spectral data of reported compounds

2-oxo-2H-chromene-3-carboxylic acid (3a)

White crystalline solid: IR (KBr): v = 1716 (C=O)cm⁻¹, 1676 (C=O)cm⁻¹: ¹H NMR (400 MHz, DMSO-*d*₆), (δ /ppm): 13.24 (s, 1H), 8.74 (s, 1H), 7.88-7.91 (d, 1H, J=4.0 Hz.), 7.74-7.70 (t, 1H, J= 8.0 Hz), 7.44-7.37 (dd, 2H, J= 12.0 Hz). ¹³C NMR (100 MHz,DMSO-*d*₆) (δ /ppm): 163.9, 156.6, 154.4, 148.3, 134.2, 130.1, 124.8, 118.3, 117.9, 116.1. MS.m/z = 189 (M-1). Anal. Calcd for C₁₀H₆O₄: C,63.16 %; H, 3.18 %. Found: C, 63.12 %; H, 3.13 %.

6-chloro-2-oxo-2H-chromene-3-carboxylic acid (3b)

White crystalline solid: IR(KBr): v = 1716 (C=O)cm⁻¹, 1676 (C=O)cm⁻¹, ¹H NMR (400 MHz,DMSO-*d*₆): (δ /ppm): 13.4 (s, 1H), 8.69 (s, 1H), 8.03 (d, 1H, J =2.56Hz), 7.73-7.76 (dd, 1H, J = 4.0 & 8.0 Hz), 7.48 (d, 1H, J = 9.72 Hz). ¹³C NMR (100 MHz,DMSO-*d*₆): (δ /ppm): 164.2, 156.5, 153.5, 147.5, 134.0, 129.4, 128.8, 119., 119.8, 118.6. MS.m/z = 227 (M+3), Anal. Calcd for C₁₀H₅ClO₄: C,:53.48; %; H, 2.24 %. Found: C,53.41 %, H, 2.21%.

7-(diethyl amino)-2-oxo-2H-chromene-3-corboxylic acid (3d)

Yellow crystalline solid: IR (KBr): v = 1709 (C=O)cm⁻¹, 1672 (C=O)cm⁻¹. ¹H NMR(400 MHz,CDCl₃- d_6): (δ /ppm): 12.33 (s, 1H), 8.62 (s, 1H), 7.43 (d, ,1H, J = 9.2 Hz), 6.69 (dd, ,1H, J = 2.4 Hz, 9.0 Hz), 6.51 (s, 1H), 3.45-3.51 (m, 4H), 1.50 (t, 6H, J = 7.2 Hz). ¹³C NMR (100 MHz,CDCl₃- d_6): (δ /ppm): 165.5, 164.4, 158.0, 153.7, 150.2, 131.9, 110.9, 108.5, 105.5, 96.8, 45.3, 12.3: MS. m/z = 261.7 (M+1). Anal. Calcd for C₁₄H₁₅NO₄: C, 64.36 %; H, 5.79 %, N, 5.36 %. Found: C, 64.27 % H, 5.685; N,5.25 %.

7-(morpholin-4-yl)-2-oxo-2H-chromene-3-carboxylic acid (3f).

Orange crystalline solid: IR (KBr): v = 1716 (C=O)cm⁻¹, 1676 (C=O)cm⁻¹. ¹H NMR (400 MHz, DMSO- d_6): (δ /ppm): 12.41 (br, 1H), 8.58 (s, 1H), 7.68 (d, , 1H, J = 9.0 Hz), 7.03 (dd, 1H, J = 2.2, 8.9 Hz), 6.85 (d, 1H, J = 2.2 Hz), 3.72-3.75 (m, 4H), 3.42-3.44 (m, 4H). ¹³C NMR(100 MHz, DMSO- d_6): (δ /ppm): 164.8, 159.0, 157.8, 155.7, 149.6, 131.8, 111.7, 110.5, 109.4, 98.9, 66.1, 47.03. MS.m/z = 276 (M+1),277(M+2). Anal.Calcd for C₁₄H₁₃NO₅: C, 61.09 %; H, 4.76 %; N, 5.09 %. Found:C, 60.96 %; H, 5.04 %, N, 4.85 %.

2-oxo-7-(propan-2-yl)-2H-chromene-3-carboxylic acid (3g).

White crystalline solid: IR (KBr): v = 1740 (C=O)cm⁻¹, 1680 (C=O)cm⁻¹: ¹H NMR(400 MHz,DMSO-*d*₆): (δ /ppm): 13.12 (br,s,1H), 8.71 (s,1H), 7.82(d, ,1H, *J* = 8.41 Hz), 7.3-7.33(m, 2H), 3.01-3.04(m,1H), 1.24 (d, 6H, *J* = 7.0 Hz). ¹³C NMR (100 MHz,DMSO-*d*₆): (δ /ppm): 164.5, 157.4, 156.6, 155.2, 148.8, 130.5, 123.9, 117.6, 116.4, 114.1, 34.2, 23.7. MS.m/z = 233 (M+1). Anal. Calcd for C₁₃H₁₂O₄: C, 67.23 %, H, 5.21 %. Found: C, 67.29%; H, 5.31%.

8-Methoxy-2-oxo-2H-chromene-3-carboxylic acid (3h)

White crystalline solid: IR (KBr): $v = 1685(C=O)cm^{-1}$, 1676 (C=O)cm⁻¹: ¹H NMR(400 MHz, DMSO-*d*₆): (δ /ppm): 13.29 (br, s, 1H), 8.71 (s, 1H), 7.41-7.44 (m, 2H), 7.30-7.34 (t, 1H, J = 8.0 Hz) , 3.90 (s, 3H,-OCH₃). ¹³C NMR(100MHz,DMSO-*d*₆): (δ /ppm): 164.0, 156.4, 148.6, 146.2, 143.8, 124.7, 121.1, 118.5, 116.2, 56.6, Ms.m/z = 221 (M+1). Anal.Calcd for C₁₁H₈O₅: C, 60.01 %; H,3.66%. Found: C, 60.03 %, H, 3.62 %.

6-Methyl-2-oxo-2H-chromene-3-carboxylic acid (3i)

White crystalline solid: IR (KBr): v = 1736 (C=O)cm⁻¹, 1679 (C=O)cm⁻¹: ¹H NMR(400 MHz, DMSO-*d*₆): (δ /ppm): 13.23 (br, s, 1H), 8.65 (s, 1H), 7.68 (s, 1H), 7.54 (d, 1H, *J* = 8.4 Hz), 7.33 (d, ,1H, *J* = 8.48 Hz).2.36(s,3H). ¹³C NMR (100 MHz,DMSO-*d*₆): (δ /ppm)164.9, 157.6, 154.4, 148.3, 135.2, 130.1, 124.8, 118.3, 117.9, 116.1. MS.m/z = 205 (M+1). Anal.Calcd for: C₁₁H₈O₄: C, 64.71 %; H, 3.95 %. Found: C, 64.70 %; H, 3.93 %.

7-Methoxy-2-oxo-2H-chromene-3-carboxylic acid (3j)

White crystalline solid: IR (KBr): v = 1745 (C=O)cm⁻¹, 1675 (C=O)cm⁻¹: ¹H NMR(400 MHz, DMSO-*d*₆): (δ /ppm):12.98(s,1H), 8.73(s, 1H), 7.83 (d, 1H, *J* = 8.6 Hz), 7.03 (m, ,2H), 3.89 (s, 3H). ¹³C NMR (100 MHz,DMSO-*d*₆): (δ /ppm): 165.12, 164.62, 157.67, 157.36, 149.54, 132.03, 114.31, 113.77, 112.08, 100.75, 56.71. MS.m\z = 221 (m+1). Anal.Calcd for: C₁₁H₈O₅: C, 60.01 %; H, 3.66 %. Found: C, 59.98 %; H, 3.63 %.

7-Fluoro-2-oxo-2H-chromene-3-carboxylic acid(3k)

White crystalline solid: IR (KBr): v = 1735 (C=O)cm⁻¹, 1693 (C=O)cm⁻¹ ¹H NMR (400 MHz, DMSO-*d*₆): (δ /ppm):13.39 (s,1H), 8.7 (s, 1H), 7.79 (dd, 1H, *J* = 2.9, 8.3 Hz), 7.58-7.68 (m,

1H),7.48-7.52 (m,1H).¹³C NMR (100 MHz,DMSO- d_6): (δ /ppm): 163.7, 159.1, 156.7, 156.3, 150.9, 147.2, 121.6, 121.3, 119.4, 118.9, 118.8, 118.2, 118.1, 115.1, 114.9. MS,m/z = 206 (M-2). Anal.Calcd for: C₁₀H₅FO₄,C, 57.71 %; H, 2.42 %. Found: C, 57.69 %; H, 2.40 %.

Ethyl-2-oxo-2H-chromene-3-carboxylate (5b)

White crystalline solid: IR (KBr): v = 1706 (C=O)cm⁻¹, 1676 (C=O)cm⁻¹.¹H NMR(400 MHz,DMSO-*d*₆) (δ /ppm): 8.76 (s, 1H), 7.93 (d, 1H, J = 6.52 Hz), 7.76-7.75 (m, 1H), 7.46-7.46 (m, 2H) 4.32 (q, ,2H, J = 7.08 Hz), 1.32 (t, 3H, J = 7.08Hz).¹³C NMR (100 MHz,DMSO-*d*₆): (δ /ppm):165, 163, 153, 151.3, 128.7, 128.3, 127.2, 126.1, 123.2, 121.4, 60.4, 14.1. MS.m/z = 219 (M+1). Anal. Calcd for C₁₂H₁₀O₄: C, 66.06 %; H, 4.62 %. Found: C, 65.98 %;H, 4.59 %.

Ethyl-7-(diethyl amino)-2-oxo-2H-chromene-3-carboxylate (5e)

Yellow crystalline solid: IR (KBr): v = 1716 (C=O)cm⁻¹, 1676 (C=O)cm⁻¹. ¹H NMR (400 MHz,DMSO-*d*₆): (δ /ppm): 8.54 (s, 1H), 7.61-7.64 (d, 1H. J = 12 Hz), 6.75-6.78 (d, 1H, J = 12.0 Hz), 6.53 (s, 1H), 4.20-4.25(q, 2H, J=8 Hz), 3.4-3.5(q, 4H, J=8.0 Hz), 1.26-1.30(t, 3H, J=8.0 Hz), 1.12-1.16(t, 6H, J=8.0 Hz). ¹³C NMR (100 MHz, DMSO-*d*₆): (δ /ppm): 165.2, 163.7, 152.5, 151, 144.2, 128.1, 123.6, 117.8, 110.1, 106.5, 60.05, 49.1, 33.84, 14.04, MS.m/z = 290.2 (M+1). Anal.Calcd for C₁₆H₁₉NO₄: C, 66.42 %; H, 6.62 %; N, 4.84 %; Found: C, 66.39 %; H, 6.61 %; N, 4.81 %.

7-(diethylamino)-2-oxo-2H-chromene-3carbonitrile (5f)

Yellow crystalline solid: IR (KBr): v = 1716 (C=O)cm⁻¹,2230(C=N) ¹H NMR(300 MHz,DMSOd₆): (δ /ppm): 8.30 (s, 1H), 8.91 (s, 1H), 7.71-7.74 (d, 1H, J = 9.0 Hz,), 7.02-7.05 (d, 1H J=9.0 Hz), 4.20-4.13 (m, 4H), 1.12 (t, 6H, J = 9.4 Hz). ¹³C NMR(100 MHz,DMSO-d₆): (δ /ppm): 163.6, 160.1, 152.3, 145, 128.1, 118, 110.1, 106.3, 100.3, 59.8, 49.1,15.2 MS.m/z = 242(M+). Anal.Calcd for C₁₄H₁₄N₂O₂: C, 69.41 %; H, 5.82 %; N, 11.56 %. Found: C, 69.31 %, H, 5.80 %; N, 11.47 %.

2-oxo-7-(propan-2-yl)-2H-chromene-3-carbonitrile (5g)

White crystalline solid: IR (KBr): v = 1722 (C=O)cm⁻¹, 2232(C=N), ¹H NMR(300 MHz,DMSO*d*₆): (δ /ppm,): 8.91 (s, 1H), 7.73 (d, 1H, *J* = 7.9 Hz), 7.40 (t, 2H *J* = 8.8 Hz), 3.02-3.09 (m, 1H), 1.25 (d, 6H, J = 6.86 Hz). ¹³C NMR (100 MHz,DMSO- d_6): (δ /ppm): 158.0, 157.6, 154.8, 153.7, 130.3, 124.5, 116.0, 115.2, 114.8, 101.3, 34.3, 23.6. MS.m/z = 214 (M+1). Anal. Calcd for C₁₃H₁₁NO₂: C, 73.23 %; H, 5.20 %; N, 6.57 %. Found: C, 73.22 %; H, 5.35 %; N, 5.61 %.

7-(morpholin-4-yl)-2-oxo-2H-chromene-3-carbonitrile (5h)

White crystalline solid: IR (KBr): v = 1731 (C=O)cm⁻¹,2203(C=N), ¹H NMR(400 MHz, DMSOd₆): (δ /ppm): 8.64 (s, 1H), 7.57 (d, 1H, J = 9.0 Hz), 7.04-7.09 (m, 2H),6.9(d,1H, J = 2.2) 3.73(q.4H, J = 5.0Hz,14.0Hz),3.47(t,4H, J = 4.6Hz) ¹³C NMR (100 MHz,DMSO-d₆): (δ /ppm): 165.8, 157.8, 157.0, 153.6, 131.7, 115.4, 114.3, 111.7, 101.4, 97.9, 57.17, 23.5, 19.6, 13.9.MS.m/z = 257 (M+1). Anal. Calcd for C₁₄H₁₂N₂O₃: C, 65.62 %; H, 4.72 %; N, 10.93 %. Found: C, 65.51 %; H, 4.69 %; N, 10.89 %;

7-methoxy-2-oxo-2H-chromene-3-carbonitrile (5i)

White crystalline solid: IR (KBr): v = 1707 (C=O)cm⁻¹, 2229 (C=N)cm⁻¹. ¹H NMR(400 MHz,DMSO-*d*₆): (δ /ppm): 8.84 (s, 1H), 7.73 (d, ,1H, J = 8.7 Hz), 7.05-7.12 (m, 2H), 3.91(s, 3H). ¹³C NMR (100 MHz,DMSO-*d*₆): (δ /ppm): 165.8, 157.8, 157.0, 153.6, 131.7, 115.5, 114.3, 111.7, 101.4, 97.9, 56.9. MS.m/z = 202 (M+1),202(M+2), Anal.Calcd for C₁₀H₅NO₃: C, 64.18 %; H, 2.69 %; N, 7.48 %.Found: C, 64.11 %; H, 2.71 %; N, 7.43 %.

7-chloro-2-oxo-2H-chromene-3-carbonitrile (5j)

White crystalline solid: IR (KBr): v = 1716 (C=O)cm⁻¹, 1676 (C=O)cm⁻¹ ¹H NMR(400 MHz,DMSO-*d*₆): (δ /ppm): 7.55-7.57 (m, 1H), 8.95 (s, 1H), 7.77-7.85 (m, 2H), ¹³C NMR (100 MHz,DMSO-*d*₆): (δ /ppm),: 165.7, 157.6, 154.9, 153.0, 131.69, 126.30, 117.50, 111.65, 101.38, 97.83. MS.m/z = 208 (M+3). Anal.Calcd for C₁₀H₄NO₂: C, 58.42 %; H, 1.96%; N, 6.81%. Found: C, 58.49 %; H, 1.92 %; N, 6.80 %.

4: Spectra of reported compounds

1. IR Spectrum of 2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3a)	12
2. ¹ H-NMR Spectrum of 2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3a)	12
3. ¹³ C Spectrum of 2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3a)	13
4. Mass Spectrum of 2-oxo-2H-chromene-3-carboxylic acid (3a)	14
5. IR Spectrum of 6-chloro-2-oxo-2H-chromene-3-carboxylic acid (3b)	15
6. ¹ H-NMR Spectrum of 6-chloro-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3b)	15
7. ¹³ C Spectrum of 6-chloro-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3b)	16
8. Mass Spectrum of 6-chloro-2-oxo-2H-chromene-3-carboxylic acid (3b)	17
9. IR Spectrum of 7-(diethyl amino)-2-oxo-2H-chromene-3-corboxylic acid (3d)	18
10. ¹ H-NMR Spectrum of 7-(diethyl amino)-2-oxo-2 <i>H</i> -chromene-3-corboxylic acid (3d)	18
11. ¹³ C Spectrum of 7-(diethyl amino)-2-oxo-2 <i>H</i> -chromene-3-corboxylic acid (3d)	19
12. Mass Spectrum of 7-(diethyl amino)-2-oxo-2H-chromene-3-corboxylic acid (3d)	20
13. IR Spectrum of 7-(morpholin-4-yl)-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3f)	21
14. ¹ H-NMR Spectrum of 7-(morpholin-4-yl)-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3f)	21
15. ¹³ C Spectrum of 7-(morpholin-4-yl)-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3f)	22
16. Mass Spectrum of 7-(morpholin-4-yl)-2-oxo-2H-chromene-3-carboxylic acid (3f)	23
17. IR Spectrum of 2-oxo-7-(propan-2-yl)-2H-chromene-3-carboxylic acid (3g)	24
18. ¹ H-NMR Spectrum of 2-oxo-7-(propan-2-yl)-2 <i>H</i> -chromene-3-carboxylic acid (3g)	24
19. ¹³ C Spectrum of 2-oxo-7-(propan-2-yl)-2 <i>H</i> -chromene-3-carboxylic acid (3g)	25
20. Mass Spectrum of 2-oxo-7-(propan-2-yl)-2H-chromene-3-carboxylic acid (3g)	26
21. IR Spectrum of 8-Methoxy-2-oxo-2H-chromene-3-carboxylic acid (3h)	27
22. ¹ H-NMR Spectrum of 8-Methoxy-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3h)	27
23. ¹³ C Spectrum of 8-Methoxy-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3h)	28
24. Mass Spectrum of 8-Methoxy-2-oxo-2H-chromene-3-carboxylic acid (3h)	29

25. IR Spectrum of 6-Methyl-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3i)	30
26. ¹ H-NMR Spectrum of 6-Methyl-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3i)	30
27. Mass Spectrum of 6-Methyl-2-oxo-2H-chromene-3-carboxylic acid (3i)	31
28. IR Spectrum of 7-Methoxy-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3j)	32
29. ¹ H-NMR Spectrum of 7-Methoxy-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3j)	32
30. ¹³ C Spectrum of 7-Methoxy-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3j)	33
31. Mass Spectrum of 7-Methoxy-2-oxo-2H-chromene-3-carboxylic acid (3j)	34
32. IR Spectrum of 7-Fluoro-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3k)	35
33. ¹ H-NMR Spectrum of 7-Fluoro-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3k)	35
34. ¹³ C Spectrum of 7-Fluoro-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3k)	36
35. Mass Spectrum of 7-Fluoro-2-oxo-2 <i>H</i> -chromene-3-carboxylic acid (3k)	37
36. IR Spectrum of Ethyl-2-oxo-2 <i>H</i> -chromene-3-carboxylate (5b)	38
37. ¹ H-NMR Spectrum of Ethyl-2-oxo-2 <i>H</i> -chromene-3-carboxylate (5b)	38
38. Mass Spectrum of Ethyl-2-oxo-2 <i>H</i> -chromene-3-carboxylate (5b)	39-40
39. IR Spectrum of Ethyl-7-(diethyl amino)-2-oxo-2 <i>H</i> -chromene-3-carboxylate (5e)	41
40. ¹ H NMR Spectrum of Ethyl-7-(diethyl amino)-2-oxo-2 <i>H</i> -chromene-3-carboxylate (5e)	41
41. Mass Spectrum of Ethyl-7-(diethyl amino)-2-oxo-2 <i>H</i> -chromene-3-carboxylate (5e)	42
42. IR Spectrum of 7-(diethylamino)-2-oxo-2H-chromene-3-carbonitrile (5f)	42
43. Mass Spectrum of 7-(diethylamino)-2-oxo-2H-chromene-3-carbonitrile (5f)	43
44. IR Spectrum of 2-oxo-7-(propan-2-yl)-2 <i>H</i> -chromene-3-carbonitrile (5g)	44
45. ¹ H-NMR Spectrum of 2-oxo-7-(propan-2-yl)-2 <i>H</i> -chromene-3-carbonitrile (5g)	44
46. ¹³ C Spectrum of 2-oxo-7-(propan-2-yl)-2 <i>H</i> -chromene-3-carbonitrile (5g)	45
47. Mass Spectrum of 2-oxo-7-(propan-2-yl)-2H-chromene-3-carbonitrile (5g)	46-47
48. IR Spectrum of 7-(morpholin-4-yl)-2-oxo-2 <i>H</i> -chromene-3-carbonitrile (5h)	48
49. ¹ H-NMR Spectrum of 7-(morpholin-4-yl)-2-oxo-2 <i>H</i> -chromene-3-carbonitrile (5h)	48

50. ¹³ C Spectrum of 7-(morpholin-4-yl)-2-oxo-2 <i>H</i> -chromene-3-carbonitrile (5h)	49
51. Mass Spectrum of 7-(morpholin-4-yl)-2-oxo-2H-chromene-3-carbonitrile (5h)	50
52. IR Spectrum of 7-methoxy-2-oxo-2 <i>H</i> -chromene-3-carbonitrile (5i)	51
53. ¹ H-NMR Spectrum of 7-methoxy-2-oxo-2 <i>H</i> -chromene-3-carbonitrile (5i)	51
54. ¹³ C Spectrum of 7-methoxy-2-oxo-2 <i>H</i> -chromene-3-carbonitrile (5i)	52
55. Mass Spectrum of 7-methoxy-2-oxo-2H-chromene-3-carbonitrile (5i)	53
56. IR Spectrum of 7-chloro-2-oxo-2H-chromene-3-carbonitrile (5j)	54
57. ¹ H-NMR Spectrum of 7-chloro-2-oxo-2 <i>H</i> -chromene-3-carbonitrile (5j)	54
58. ¹³ C Spectrum of 7-chloro-2-oxo-2 <i>H</i> -chromene-3-carbonitrile (5j)	55
59. Mass Spectrum of 7-chloro-2-oxo-2H-chromene-3-carbonitrile (5j)	56

2. ¹H-NMR Spectrum of 2-oxo-2*H*-chromene-3-carboxylic acid (3a)

3. ¹³C Spectrum of 2-oxo-2*H*-chromene-3-carboxylic acid (3a)

4. Mass Spectrum of 2-oxo-2*H*-chromene-3-carboxylic acid (3a)

5. IR Spectrum of 6-chloro-2-oxo-2*H*-chromene-3-carboxylic acid (3b)

6. ¹H-NMR Spectrum of 6-chloro-2-oxo-2*H*-chromene-3-carboxylic acid (3b)

7. ¹³C Spectrum of 6-chloro-2-oxo-2*H*-chromene-3-carboxylic acid (3b)

8. Mass Spectrum of 6-chloro-2-oxo-2H-chromene-3-carboxylic acid (3b)

9. IR Spectrum of 7-(diethyl amino)-2-oxo-2H-chromene-3-corboxylic acid (3d)

10. ¹H-NMR Spectrum of 7-(diethyl amino)-2-oxo-2*H*-chromene-3-corboxylic acid (3d)

11. ¹³C Spectrum of 7-(diethyl amino)-2-oxo-2*H*-chromene-3-corboxylic acid (3d)

12. Mass Spectrum of 7-(diethyl amino)-2-oxo-2H-chromene-3-corboxylic acid (3d)

14. ¹H-NMR Spectrum of 7-(morpholin-4-yl)-2-oxo-2*H*-chromene-3-carboxylic acid (3f)

15. ¹³C Spectrum of 7-(morpholin-4-yl)-2-oxo-2*H*-chromene-3-carboxylic acid (3f)

16. Mass Spectrum of 7-(morpholin-4-yl)-2-oxo-2H-chromene-3-carboxylic acid (3f)

18. ¹H-NMR Spectrum of 2-oxo-7-(propan-2-yl)-2*H*-chromene-3-carboxylic acid (3g)

19. ¹³C Spectrum of 2-oxo-7-(propan-2-yl)-2*H*-chromene-3-carboxylic acid (3g)

20. Mass Spectrum of 2-oxo-7-(propan-2-yl)-2H-chromene-3-carboxylic acid (3g)

22. ¹H-NMR Spectrum of 8-Methoxy-2-oxo-2*H*-chromene-3-carboxylic acid (3h)

23. ¹³C Spectrum of 8-Methoxy-2-oxo-2*H*-chromene-3-carboxylic acid (3h)

24. Mass Spectrum of 8-Methoxy-2-oxo-2H-chromene-3-carboxylic acid (3h)

25. IR Spectrum of 6-Methyl-2-oxo-2H-chromene-3-carboxylic acid (3i)

26. ¹H-NMR Spectrum of 6-Methyl-2-oxo-2*H*-chromene-3-carboxylic acid (3i)

27. Mass Spectrum of 6-Methyl-2-oxo-2H-chromene-3-carboxylic acid (3i)

28. IR Spectrum of 7-Methoxy-2-oxo-2*H*-chromene-3-carboxylic acid (3j)

29. ¹H-NMR Spectrum of 7-Methoxy-2-oxo-2*H*-chromene-3-carboxylic acid (3j)

30. ¹³C Spectrum of 7-Methoxy-2-oxo-2*H*-chromene-3-carboxylic acid (3j)

31. Mass Spectrum of 7-Methoxy-2-oxo-2H-chromene-3-carboxylic acid (3j)

33. ¹H-NMR Spectrum of 7-Fluoro-2-oxo-2*H*-chromene-3-carboxylic acid (3k)

34. ¹³C Spectrum of 7-Fluoro-2-oxo-2*H*-chromene-3-carboxylic acid (3k)

35. Mass Spectrum of 7-Fluoro-2-oxo-2H-chromene-3-carboxylic acid (3k)

36. IR Spectrum of Ethyl-2-oxo-2*H*-chromene-3-carboxylate (5b)

37. ¹H-NMR Spectrum of Ethyl-2-oxo-2*H*-chromene-3-carboxylate (5b)

38. Mass Spectrum of Ethyl-2-oxo-2H-chromene-3-carboxylate (5b) (Continued)

38. Mass Spectrum of Ethyl-2-oxo-2*H*-chromene-3-carboxylate (5b)

39. IR Spectrum of Ethyl-7-(diethyl amino)-2-oxo-2*H*-chromene-3-carboxylate (5e)

40. ¹H NMR Spectrum of Ethyl-7-(diethyl amino)-2-oxo-2*H*-chromene-3-carboxylate (5e)

41. Mass Spectrum of Ethyl-7-(diethyl amino)-2-oxo-2H-chromene-3-carboxylate (5e)

42. IR Spectrum of 7-(diethylamino)-2-oxo-2H-chromene-3-carbonitrile (5f)

43. Mass Spectrum of 7-(diethylamino)-2-oxo-2H-chromene-3carbonitrile (5f)

45. ¹H-NMR Spectrum of 2-oxo-7-(propan-2-yl)-2*H*-chromene-3-carbonitrile (5g)

46. ¹³C Spectrum of 2-oxo-7-(propan-2-yl)-2*H*-chromene-3-carbonitrile (5g)

47. Mass Spectrum of 2-oxo-7-(propan-2-yl)-2*H*-chromene-3-carbonitrile (5g) (Continued)

47. Mass Spectrum of 2-oxo-7-(propan-2-yl)-2*H*-chromene-3-carbonitrile (5g)

48. IR Spectrum of 7-(morpholin-4-yl)-2-oxo-2*H*-chromene-3-carbonitrile (5h)

49. ¹H-NMR Spectrum of 7-(morpholin-4-yl)-2-oxo-2*H*-chromene-3-carbonitrile (5h)

50. ¹³C Spectrum of 7-(morpholin-4-yl)-2-oxo-2*H*-chromene-3-carbonitrile (5h)

51. Mass Spectrum of 7-(morpholin-4-yl)-2-oxo-2H-chromene-3-carbonitrile (5h)

53. ¹H-NMR Spectrum of 7-methoxy-2-oxo-2*H*-chromene-3-carbonitrile (5i)

1.033

0.999

1.011

3.000

51

54. ¹³C Spectrum of 7-methoxy-2-oxo-2*H*-chromene-3-carbonitrile (5i)

55. Mass Spectrum of 7-methoxy-2-oxo-2H-chromene-3-carbonitrile (5i)

56. IR Spectrum of 7-chloro-2-oxo-2H-chromene-3-carbonitrile (5j)

57. ¹H-NMR Spectrum of 7-chloro-2-oxo-2*H*-chromene-3-carbonitrile (5j)

58. ¹³C Spectrum of 7-chloro-2-oxo-2*H*-chromene-3-carbonitrile (5j)

59. Mass Spectrum of 7-chloro-2-oxo-2H-chromene-3-carbonitrile (5j)