Supporting Information

Org. Commun. 11:2 (2018) 80-97

New symmetrical acyclic and alicyclic *bis*urea derivatives of 4,4'-methylene*bis*(phenyl isocyanate): Synthesis, characterization, bioactivity and antioxidant activity evaluation and molecular docking studies

Naga Raju Chamarthio^{1*}, Venkata Chalapathi Ponneo^{2*}, Hari Babu Pulluruo^{2,3}, Janakiramudu Dasari Balijao², Sindhu Reddy Gutalao⁴, Saritha Venkatareddy Kallimakulao⁴, Venkataramaiah Chinthao⁵ and Rajendra Wudayagirio⁵

List of Contents

T'41 f 41. T. f 4'	Page
Title of the Information	No.
S.1. Numbering of Protons/Carbons for NMR Spectra	2
S.2. Products of Scheme 1	3
S.3. Biological Activity Studies	5-8
Table S1. Summary of Antimicrobial activity of the title compounds 10(a-m) against selected bacterial and fungal pathogens	9
S.4. Antioxidant Activity	10
References	11
¹ H NMR Spectrum of Compound 10a	12-13
¹³ C NMR Spectrum of Compound 10a	14
¹ H NMR Spectrum of Compound 10m	15-16
¹³ C NMR Spectrum of Compound 10m	17
IR Spectrum of Compound 10a	18
IR Spectrum of Compound 10m	19
LCMS of Compound 10a	20
CHN Analysis of Compound 10a	21
LCMS of Compound 10m	22
CHN Analysis of Compound 10m	23

¹Department of Chemistry, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India ²Department of Chemistry, Sri Venkateswara Arts College (TTD's), Tirupati,517502, Andhra Pradesh, India

³Department of Chemistry, P. V. K. N. Government College, Chittoor, 517002, Andhra Pradesh, India ⁴Department of Future Studies/Biotechnology, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India

⁵Division of Molecular Biology, Department of Zoology, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India

^{*}Corresponding authors: pychalapathisumathi@gmail.com (V. C. Ponne); rajuchamarthi10@gmail.com (N. Rç Chamarthi)

S.1. Numbering of Protons/Carbons for NMR Spectra

$$F \xrightarrow{15'} \xrightarrow{16'} \xrightarrow{H} \xrightarrow{H} \xrightarrow{15'} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{8'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{15'} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{10'} \xrightarrow{10'} \xrightarrow{10'} \xrightarrow{N} \xrightarrow{10'} \xrightarrow{10$$

S.2. Products of scheme 1

Bisurea Derivative Structure and Name with formula	MW; m/z values and Elemental Analysis Data
HONN NOH 1,1'-(methylenebis(4,1-phenylene))bis (3-(2-hydroxyethyl)urea) Chemical Formula: C ₁₉ H ₂₄ N ₄ O ₄	Exact Mass: 372.18 Molecular Weight: 372.42 m/z: 372.18 (100.0%), 373.18 (22.2%), 374.19 (2.1%), 374.18 (1.1%) Elemental Analysis: C, 61.28; H, 6.50; N, 15.04; O, 17.18
HON NO OH 1,1'-(methylenebis(4,1-phenylene))bis (3-(3-hydroxypropyl)urea) Chemical Formula: C ₂₁ H ₂₈ N ₄ O ₄	Exact Mass: 400.21 Molecular Weight: 400.47 m/z: 400.21 (100.0%), 401.21 (24.2%), 402.22 (3.4%) Elemental Analysis: C, 62.98; H, 7.05; N, 13.99; O, 15.98
HO HO CH ₃ 1,1'-(methylenebis(4,1-phenylene))bis (3-(1-hydroxybutan-2-yl)urea) Chemical Formula: C ₂₃ H ₃₂ N ₄ O ₄	Exact Mass: 428.24 Molecular Weight: 428.52 m/z: 428.24 (100.0%), 429.25 (25.4%), 430.25 (3.9%), 429.24 (1.5%) Elemental Analysis: C, 64.46; H, 7.53; N, 13.07; O, 14.93
H H 10d H H H N N N N N N N N N N N N N N N N	Exact Mass: 476.13 Molecular Weight: 476.61 m/z: 476.13 (100.0%), 477.14 (27.4%), 478.13 (9.5%), 478.14 (4.5%), 477.13 (3.1%), 479.13 (2.7%) Elemental Analysis: C, 63.00; H, 5.08; N, 11.76; O, 6.71; S, 13.46
1,1'-(methylenebis(4,1-phenylene))bis (3-(pyridin-3-ylmethyl)urea) Chemical Formula: C ₂₇ H ₂₆ N ₆ O ₂	Exact Mass: 466.21 Molecular Weight: 466.53 m/z: 466.21 (100.0%), 467.22 (29.6%), 468.22 (4.6%), 467.21 (2.2%) Elemental Analysis: C, 69.51; H, 5.62; N, 18.01; O, 6.86
H H H H H H H H H H H H H H H H H H H	Exact Mass: 500.20 Molecular Weight: 500.54 m/z: 500.20 (100.0%), 501.21 (31.7%), 502.21 (5.3%), 501.20 (1.5%) Elemental Analysis: C, 69.59; H, 5.24; F, 7.59; N, 11.19; O, 6.39
H H H 10g H H H H H H H H H H H H H H H H H H H	Exact Mass: 532.14 Molecular Weight: 533.45 m/z: 532.14 (100.0%), 534.14 (64.4%), 533.15 (31.7%), 535.14 (21.1%),536.14 (10.8%), 534.15 (5.3%), 537.14 (3.3%), 536.15 (3.1%), 533.14 (1.5%) Elemental Analysis: C, 65.29; H, 4.91; Cl, 13.29; N, 10.50; O, 6.00

H 10h H N	Exact Mass: 392.22 Molecular Weight: 392.49 m/z: 392.22 (100.0%), 393.22 (26.4%), 394.23
N,N'-(methylenebis(4,1-phenylene))bis (pyrrolidine-1-carboxamide) Chemical Formula: C ₂₃ H ₂₈ N ₄ O ₂	(3.5%) Elemental Analysis: C, 70.38; H, 7.19; N, 14.27; O, 8.15
N,N'-(methylenebis(4,1-phenylene))bis (piperidine-1-carboxamide) Chemical Formula: C ₂₅ H ₃₂ N ₄ O ₂	Exact Mass: 420.25 Molecular Weight: 420.55 m/z: 420.25 (100.0%), 421.26 (27.5%), 422.26 (4.0%), 421.25 (1.5%) Elemental Analysis: C, 71.40; H, 7.67; N, 13.32; O, 7.61
N,N'-(methylenebis(4,1-phenylene))bis (morpholine-4-carboxamide) Chemical Formula: C ₂₃ H ₂₈ N ₄ O ₄	Exact Mass: 424.21 Molecular Weight: 424.49 m/z: 424.21 (100.0%), 425.21 (26.4%), 426.22 (3.9%) Elemental Analysis: C, 65.08; H, 6.65; N, 13.20; O, 15.08
H ₃ C H 10k H N CH ₃ N,N'-(methylenebis(4,1-phenylene))bis(4-methyl piperazine-1-carboxamide) Chemical Formula: C ₂₅ H ₃₄ N ₆ O ₂	Exact Mass: 450.27 Molecular Weight: 450.58 <i>m/z:</i> 450.27 (100.0%), 451.28 (27.5%), 452.28 (4.1%), 451.27 (2.2%) Elemental Analysis: C, 66.64; H, 7.61; N, 18.65; O, 7.10
N,N'-(methylenebis(4,1-phenylene))bis(4-(pyridin-2-yl)) piperazine-1-carboxamide) Chemical Formula: C ₃₃ H ₃₆ N ₈ O ₂	Exact Mass: 576.30 Molecular Weight: 576.69 m/z: 576.30 (100.0%), 577.30 (36.2%), 578.30 (7.7%), 577.29 (3.0%) Elemental Analysis: C, 68.73; H, 6.29; N, 19.43; O, 5.55
N,N'-(methylenebis(4,1-phenylene))bis(azepane-1-carboxamide) Chemical Formula: C ₂₇ H ₃₆ N ₄ O ₂	Exact Mass: 448.28 Molecular Weight: 448.60 m/z: 448.28 (100.0%), 449.29 (29.7%), 450.29 (4.7%), 449.28 (1.5%) Elemental Analysis: C, 72.29; H, 8.09; N, 12.49; O, 7.13

S.3. Biological Activity Studies

S3.1. Assay Parameters

Test Concentration	32 μg/mL or 20 μM
	≤1% DMSO
QC	Duplicate (n=2)
	Control MIC: Pass
Plates	Non-Binding Surface, 384 well plate
Media Bacteria	Cation-adjusted Mueller Hinton broth
Fungi	Yeast Nitrogen Base
Read Out Bacteria	OD_{600}
C. albicans	OD_{530}
C. neoformans	Resazurin OD ₆₀₀₋₅₇₀

S.3.2 Methods

S.3.2.1 Sample preparation

Samples were provided by the collaborator and stored frozen at -20 °C. Samples were prepared in DMSO and water to a final testing concentration of 32 μ g/mL or 20 μ M (unless otherwise indicated in the data sheet), in 384-well, non-binding surface plate (NBS) for each bacterial/fungal strain, and in duplicate (n=2), and keeping the final DMSO concentration to a maximum of 1% DMSO. All the sample-preparation was done using liquid handling robots. Compounds that showed solubility issues during stock solution preparation are detailed in the data sheet.

S.3.3 Antimicrobial Assay

S.3.3.1 Procedure

All bacteria were cultured in Cation-adjusted Mueller Hinton Broth (**CAMHB**) at 37 °C overnight. A sample of each culture was then diluted 40-fold in fresh broth and incubated at 37 °C for 1.5-3 h. The resultant mid-log phase cultures were diluted (CFU/mL measured by OD₆₀₀), then added to each well of the compound containing plates, giving a cell density of $5x10^5$ CFU/mL and a total volume of 50 μ L. All the plates were covered and incubated at 37 °C for 18 h without shaking.

S.3.3.2 Analysis

Inhibition of bacterial growth was determined measuring absorbance at 600 nm (OD_{600}), using a Tecan M1000 Pro monochromator plate reader. The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (bacteria without inhibitors) on the same plate as references. The significance of the inhibition values was determined by modified Z-scores, calculated using the median and MAD of the samples (no controls) on the same plate. Samples with inhibition value above 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as actives. Samples with inhibition values between 50 - 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as partial actives. Samples with inhibition values between 50 - 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as partial actives.

S.3.4. Antifungal Assay

S.3.4.1 Procedure

Fungi strains were cultured for 3 days on Yeast Extract-Peptone Dextrose (**YPD**) agar at 30 °C. A yeast suspension of 1 x 10⁶ to 5 x 10⁶ CFU/mL (as determined by OD530) was prepared from five colonies. The suspension was subsequently diluted and added to each well of the compound-containing plates giving a final cell density of fungi suspension of 2.5×10^3 CFU/mL and a total volume of 50 μ L. All plates were covered and incubated at 35 °C for 24 h without shaking.

3.4.2 Analysis

Growth inhibition of *C. albicans* was determined measuring absorbance at 530 nm (OD530), while the growth inhibition of *C. neoformans* was determined measuring the difference in absorbance between 600 and 570 nm (OD600-570), after the addition of resazurin (0.001% final concentration) and incubation at 35 °C for additional 2 h. The absorbance was measured using a Biotek Synergy HTX plate reader. The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (fungi without inhibitors) on the same plate. The significance of the inhibition values was determined by modified Z-scores, calculated using the median and MAD of the samples (no controls) on the same plate. Samples with inhibition value above 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as actives. Samples with inhibition values between 50 - 80% and Z-Score above 2.5 for either replicate (n=2 on different plates) were classed as partial actives.

S.3.5 Antibiotic standards preparation and Quality control

Colistin and Vancomycin were used as positive bacterial inhibitor standards for Gramnegative and Gram-positive bacteria, respectively. Fluconazole was used as a positive fungal inhibitor standard for *C. albicans and C. neoformans*. The antibiotics were provided in 4 concentrations, with 2 above and 2 below its MIC value, and plated into the first 8 wells of column 23 of the 384-well NBS plates.

The quality control (QC) of the assays was determined by the antimicrobial controls and the Z'-factor (using positive and negative controls). Each plate was deemed to fulfil the quality criteria (pass QC), if the Z'-factor was above 0.4, and the antimicrobial standards showed full range of activity, with full growth inhibition at their highest concentration, and no growth inhibition at their lowest concentration.

S.3.5.1. Assay materials

Material	Code	Brand	Cat No.
Compound preparation plate	PP	Corning	3364
[Polypropylene]		-	
Assay Plates	NBS	384w Corning	3640
[Non-binding surface]			
Growth media - bacteria	CAMHB	Bacto Laboratories	212322
Culture agar - fungi	YPD	Becton Dickinson	242720
Growth media - fungi	YNB	Becton Dickinson	233520
Resazurin		Sigma-Aldrich	R7017

S.3.5.2. Standards

Sample Name	Sample ID	Full MW	Stock Conc. (mg/mL)	Solvent	Source
Colistin - Sulfate	MCC_000094:02	1400.63	10.00	DMSO	Sigma; C4461
Vancomycin - HCL	MCC_000095:02	1485.71	10.00	DMSO	Sigma; 861987
Fluconazole	MCC_008383:01	306.27	2.56	DMSO	Sigma; F8929

S.3.5.3. Microbial Strains

ID	Batch	Organism	Strain	Description
GN_001	02	Escherichia coli	ATCC 25922	FDA control strain
GN_003	02	Klebsiella pneumoniae	ATCC 700603	MDR
GN_034	02	Acinetobacter baumannii	ATCC 19606	Type strain
GN_042	02	Pseudomonas aeruginosa	ATCC 27853	Quality control strain
GP_020	02	Staphylococcus aureus	ATCC 43300	MRSA
FG_001	01	Candida albicans	ATCC 90028	CLSI reference
FG_002	01	Cryptococcus neoformans	ATCC 208821	H99 - Type strain

S.3.5.4. Controls

Strain ID	Species	Antibiotic	Pass/Fail
GN_001:02	E. coli	Colistin	Pass
GN_003:02	K. pneumonia (MDR)	Colistin	Pass
GN_034:02	A. baumannii	Colistin	Pass
GN_042:02	P. aeruginosa	Colistin	Pass
GP_020:02	S. aureus (MRSA)	Vancomycin	Pass
FG_001:01	C. albicans	Fluconazole	Pass
FG_002:01	C. neoformans (H99)	Fluconazole	Pass

S.3.6 Method analysis

S.3.6.1 Antibacterial data collection

Inhibition of bacterial growth was determined measuring absorbance at 600 nm (OD_{600}), using a Tecan M1000 Pro monochromator plate reader. The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (bacteria without inhibitors) on the same plate as references.

S.3.6.2 Antifungal data collection

Growth inhibition of C. albicans was determined measuring absorbance at 530 nm (OD₅₃₀), while the growth inhibition of C. neoformans was determined measuring the difference in absorbance between 600 and 570 nm (OD₆₀₀₋₅₇₀), after the addition of resazurin (0.001% final concentration) and incubation at 35°C for additional 2 h. The absorbance was measured using a Biotek Synergy HTX plate reader. The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (bacteria without inhibitors) on the same plate as references. Table S1 depicts the antimicrobial activity with % inhibition values.

S.3.6.3 Inhibition

Percentage growth inhibition of an individual sample is calculated based on Negative controls (media only) and Positive Controls (bacterial/fungal media without inhibitors). Please note negative inhibition values indicate that the growth rate (or OD600) is higher compared to the Negative Control (Bacteria/fungi only, set to 0% inhibition). The growth rates for all bacteria and fungi has a variation of -/+ 10%, which is within the reported normal distribution of bacterial/fungal growth. Any significant variation (or outliers/hits) is identified by the modified Z-Score, and actives are selected by a combination of inhibition value and Z-Score.

S.3.6.4. Z-Score

Z-Score analysis is done to investigate outliers or hits among the samples. The Z-Score is calculated based on the sample population using a modified Z-Score method which accounts for

possible skewed sample population. The modified method uses median and MAD (median average deviation) instead of average and sd, and a scaling factor [Iglewicz, B. & Hoaglin, D. C. Volume 16: How to Detect and Handle Outliers. The ASQC Basic Reference in Quality Control: Statistical Techniques, 1993]: M(i) = 0.6745 * (x(i) - median(x))/MAD). M(i) values of > |2.5| (absolute) label outliers or hits.

S.3.6.5. Quality Control

All screening is performed as two replica (n=2), with both replicas on different assay plates, but from single plating and performed in a single screening experiment (microbial incubation). Each individual value is reported in the table (see ..1 and ..2). In addition, two values are used as quality controls for individual plates: Z'-Factor [1 - (3 * (sd(NegCtrl)+sd(PosCtrl))/(average(PosCtrl)-average(NegCtrl)))] and Standard Antibiotic controls at different concentrations (>MIC and < MIC). The plate passes the quality control if Z'-Factor >0.4 and Standards are active and inactive at highest and lowest concentrations, respectively. Data not supplied.

S.3.6.6 Selection of Actives

- A [Active] Samples with inhibition values equal to or above 80% and abs(Z-Score) above |2.5| for either replicate (n=2 on different plates) were classed as active.
- ${f P}$ [Partial Active] compounds with inhibition values between 50.9% 79.9% or abs(Z-Sore) below [2.5].
- I Inactive compounds with inhibition values below 50% and/or abs(Z-Sore) below [2.5].

S. 3.6.7. Act XX

Act_XX: Indicates if a compound is active in any of the assays against a specific organism (Sa, Ec, Kp, Pa, Kp, Ca or Cn), or organism classes (GN: Gram-negative, GP: Gram-positive). Please note that the flag indicates single activities even if the average Inhibition values suggests otherwise, in which case a manual adjustment of the flag might be appropriate.

S.3.6.8. Act

Act: Indicates the number of organism-classes (GN,GP and FG) the compound has been found active against, 0 = no activity.

S.3.6.3.9. Sel

Sel: Indicates compounds that have been selected for further dose response studies, Hit-Confirmation. The selection includes all active as well as compounds with ambiguous results requiring confirmation of activity or inactivity.

Table S.1. Summary of Antimicrobial activity of the title compounds 12(a-m) against selected bacterial and fungal pathogens

CO-ADD Compound ID	Compound Code	CO-ADD Project ID	CO-ADD Run ID	Sel	Act	Sa	Ec	Кр	Pa	Ab	Ca	Cn	Conc
C0319639	10a	P0459	PSR00143	0	0	39.27	-3.35	19.41	21.49	0.04	12.27	-56.75	32 ug/mL
C0319649	10b	P0459	PSR00143	0	0	39.25	2.92	1.09	24.99	4.87	2.27	-57.49	32 ug/mL
C0319640	10c	P0459	PSR00143	0	0	27.37	1.53	11.19	20.89	0.62	-0.17	-38.07	32 ug/mL
C0319651	10d	P0459	PSR00143	0	0	38.55	-5.58	5.00	23.05	-3.62	6.29	-66.42	32 ug/mL
C0319646	10e	P0459	PSR00143	0	0	43.02	3.89	18.06	24.80	11.12	3.50	7.56	32 ug/mL
C0319647	10f	P0459	PSR00143	0	0	46.23	4.52	20.19	24.92	14.31	4.25	9.30	32 ug/mL
C0319648	10g	P0459	PSR00143	0	0	44.01	4.02	19.46	24.10	12.76	4.59	8.24	32 ug/mL
C0319641	10h	P0459	PSR00143	0	0	30.22	0.09	16.99	24.43	5.12	-2.82	-36.92	32 ug/mL
C0319642	10i	P0459	PSR00143	0	0	21.66	-3.07	6.07	19.72	-3.13	19.82	2.44	32 ug/mL
C0319643	10j	P0459	PSR00143	0	0	29.19	1.12	19.30	17.98	12.02	2.61	10.23	32 ug/mL
C0319644	10k	P0459	PSR00143	0	0	42.05	3.67	18.91	19.47	17.22	2.71	6.67	32 ug/mL
C0319650	10l	P0459	PSR00143	0	0	51.83	5.16	22.24	23.73	21.84	24.16	9.24	32 ug/mL
C0319645	10m	P0459	PSR00143	0	0	48.46	4.68	20.20	25.74	18.03	14.16	9.32	32 ug/mL

GN: Gram-negative species: Ec: Escherichia coli ATCC 25922, Kp: Klebsiella pneumoniae ATCC 700603, Ab: Acinetobacter baumannii ATCC 19606, Pa: Pseudomonas aeruginosa ATCC 27853, GP: Gram-positive species: Sa: Staphylococcus aureus ATCC 43300, FG: Fungal species: Ca: Candida albicans ATCC 90028 and Cn: Cryptococcus neoformans ATCC 208821; Sel: Selected, Act: Active.

S.4. Antioxidant Activity

Oxidation is a chemical reaction that can produce reactive oxygen species (ROS) such as H₂O₂, HOCl, HOBr, ROOH, HNO₂, ozone O₃, singlet oxygen O₂, free radicals like oxygen radical, O_2 , superoxide radical anion, O_2 , hydroxyl radical, OH, perhydroxyl radical, OOH, alkoxy radical, RO', peroxy radical, ROO', and reactive nitrogen species (NOS) nitric oxide, NO', Nitrogen dioxide, NO₂ and peroxynitrite radical, ONOO leading to chain reactions that may damage cellular components such as proteins (enzyme inhibition, denaturation, degradation), lipids (lipid peroxidation) and DNA (mutations, cancer). An antioxidant is a molecule that prevents the oxidation of other molecules. Antioxidants terminate these chain reactions, Antioxidants are used for two different groups of substances: industrial chemicals added to products to prevent oxidation and natural chemicals found in food and body tissues which exert beneficial health benefits as well as redox signaling. It's a paradox in metabolism that oxygen is required for the existence of life on the Earth and it damages the living cells. Failure of the body to balance or counteract or detoxify the harmful effects of free radicals by means of antioxidants leads to the oxidative stress. Oxidative stress leads to many pathophysiological conditions which include neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, neurodegeneration in motor neuron diseases, the pathologies caused by diabetes, rheumatoid arthritis, gene mutations and cancers, chronic fatigue syndrome, fragile X syndrome, heart and blood vessel disorders, atherosclerosis, heart failure, heart attack and inflammatory diseases. Several antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase etc. protect DNA from oxidative stress. Dietary antioxidants, β-carotene, vitamin A, vitamin C, and vitamin E, glutathione (mother of antioxidants), flavonoids, catechins, polyphenols, selenium, etc, are found to exert a beneficial health effect if treated with.¹

The beneficial effects of fruits, vegetables, beverages and newly synthesized drug molecules on human health have been attributed to their antioxidant activities. Therefore, antioxidant activity of food products is recognized as one of the important parameters in determining their functional values. Until now, antioxidant activity has been measured by various chemical and biological methods; 1. β -Carotene Bleaching (BCB) Test 2. Thiobarbituric Acid Reactive Species (TBARS) Assay 3. DPPH (1,1-diphenyl-2-picrylhydrazyl) Radical Scavenging Assay 4. FRAP (The ferric Reducing Antioxidant Power) Assay and 5. Phycoerythyrin Assay. The present study employed DPPH Radical Scavenging Assay to assess the antioxidant activity of the title compounds.²

S.4.1. Antioxidant Activity by DPPH Scavenging Assay

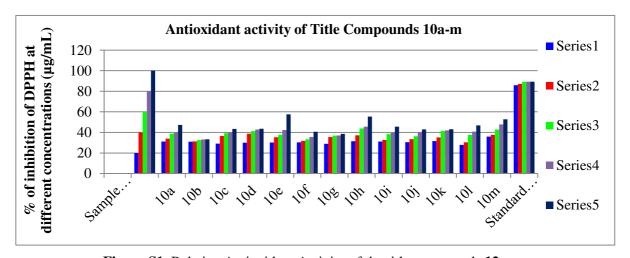
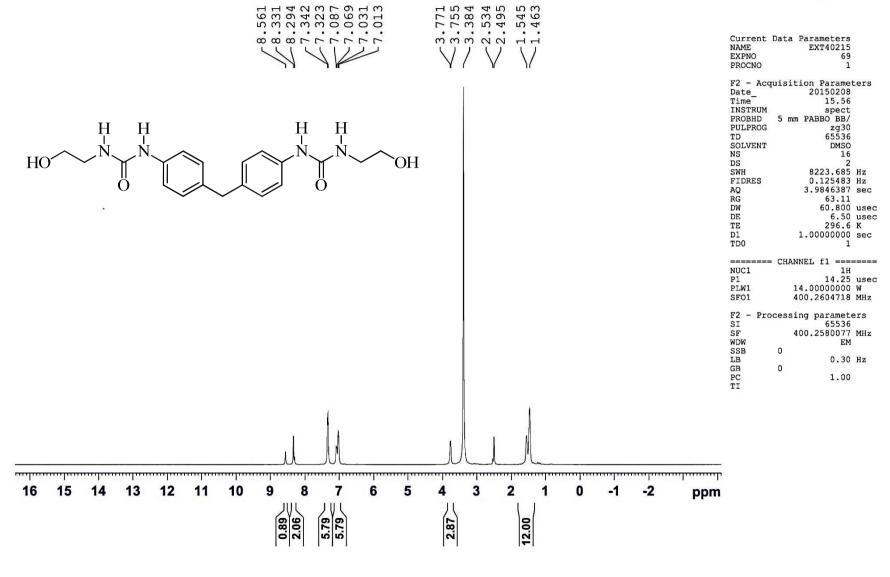
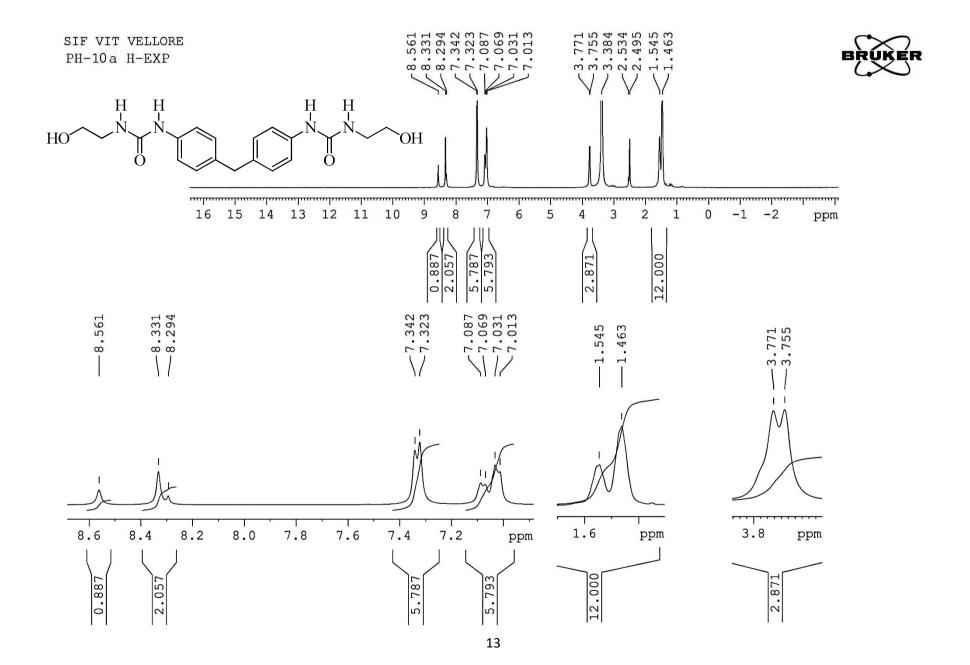


Figure S1. Relative Antioxidant Activity of the title compounds 12a-m.

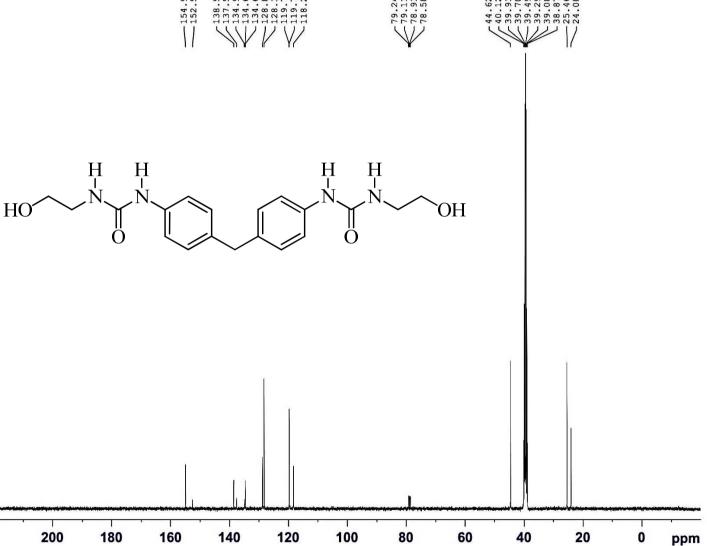
Antioxidant potential of the chemicals was estimated using modified DPPH free radical scavenging assay in 96 micro-well flat plates. Stock solutions of the chemicals were prepared as 1 mg/mL in DMSO. Each well was filled in with 200 μ L chemical in DMSO starting from 100 μ g/mL down to the lowest 20 μ g/mL. Then, 5 μ L of the DPPH solution (2.5 mg/mL in methanol) was added to each well. After keeping the plate in the darkness for 30 minutes, the optical density of each well

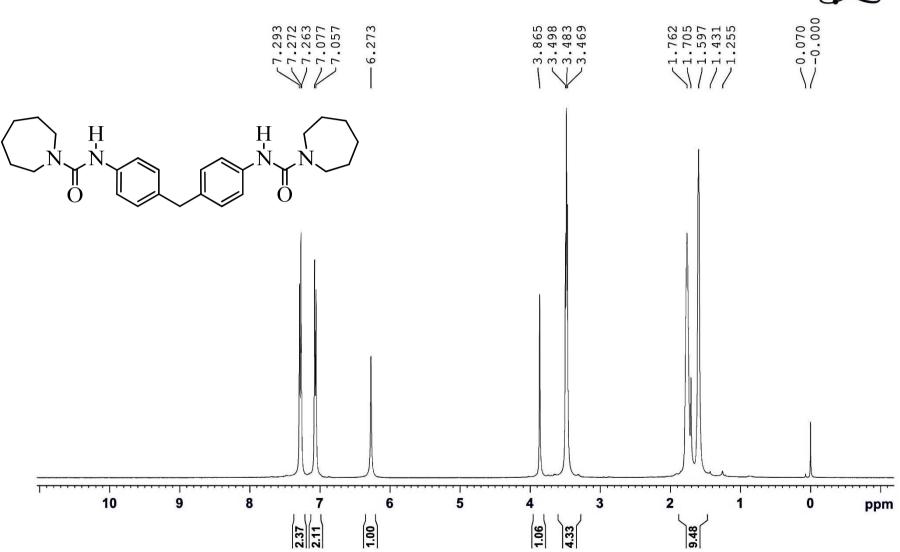
was read using Tecan Infinite M 200 micro plate reader at wavelength 517 nm. Percentage of inhibition was calculated using the following formula:

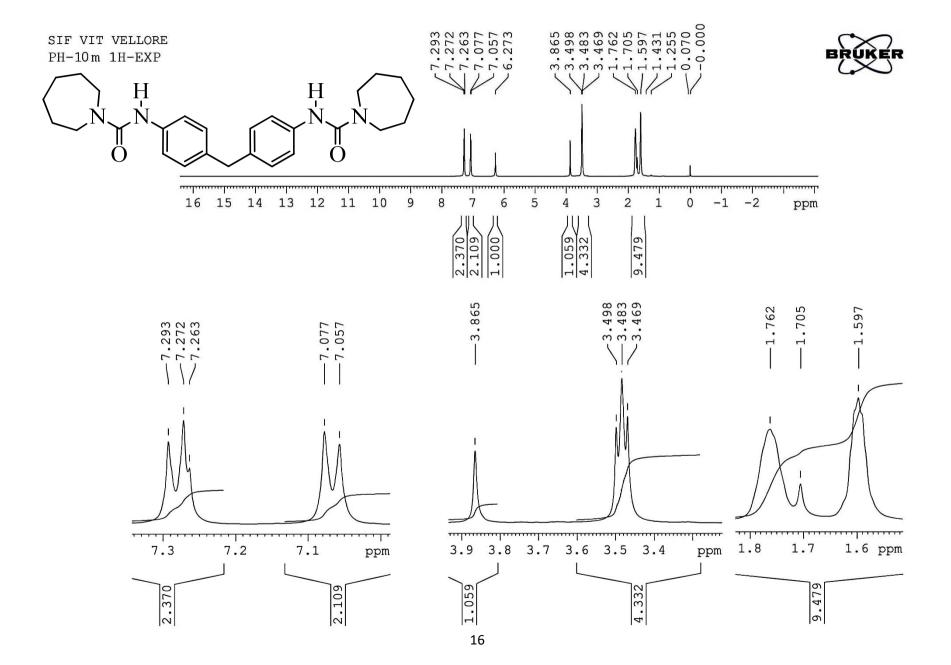

%Inhibition =
$$\frac{OD (DPPH - Sample)}{OD (DPPH)} x100$$


The radical scavenging effect was examined and compared with other natural antioxidant, ascorbic acid which was used as positive control. **Figure S1** depicts the relative antioxidant activity of the title compounds with respect to Vitamin C.

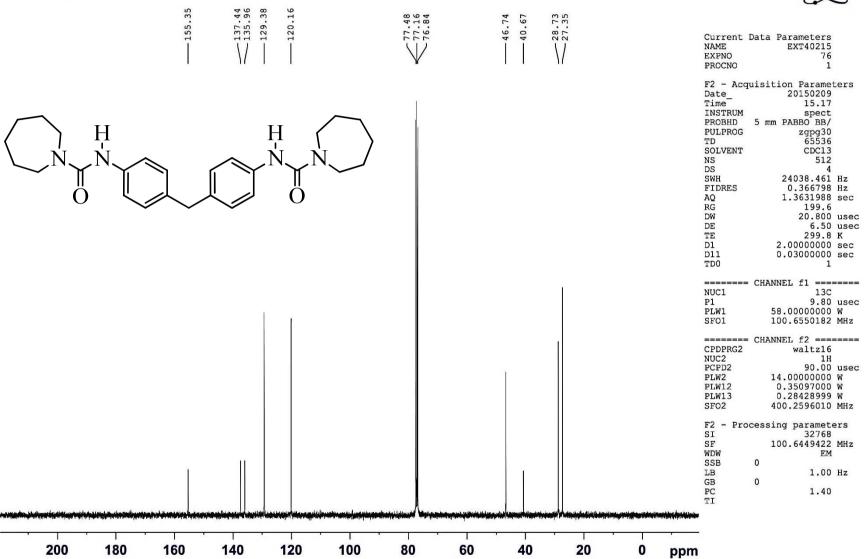
References

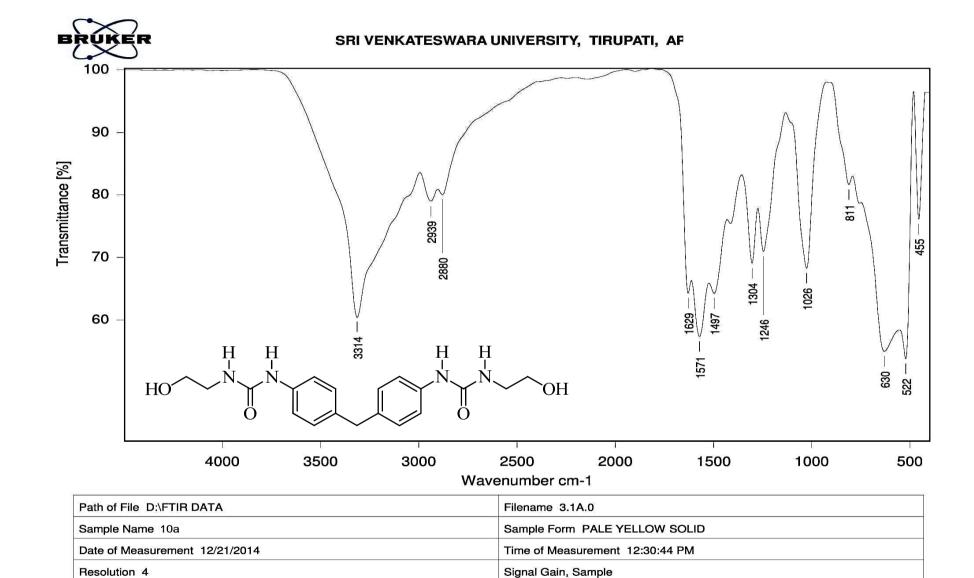

- [1] Ronald L.; Prior, X. W.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. *J. Agric. Food Chem.* **2005**, *53*, 4290-4302.
- [2] Antolovich, M.; Prenzler, D.P.; Patsalides, E.; Mc Donald, S.; Robards, K. Methods for testing antioxidant activity. *Analyst*, **2002**, *127*, 183–198.


SIF VIT VELLORE PH-10a 13C

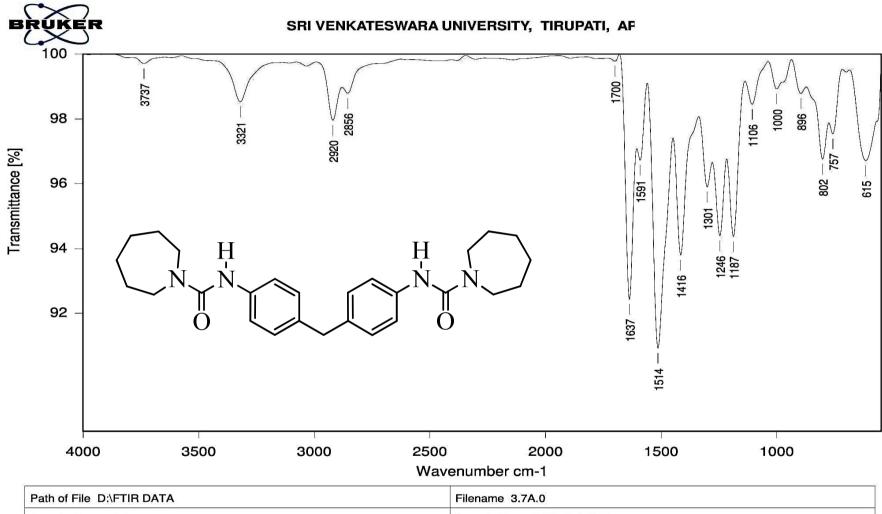


Current	Data	Daws		+0.00	
NAME	Dala .			0215	
		E	114		
EXPNO				82	
PROCNO				1	
F2 - Acq	uisit:	ion	Pa	rame	ters
Date				0210	
Time_		-		7.10	
INSTRUM				pect	
	5 mm	D3.	5	pect	
PROBHD	o mm	PAL			
PULPROG				pg30	
TD				5536	
SOLVENT				DMSO	
NS				512	
DS				4	
SWH		240	138	.461	Hz
FIDRES		0	36	6798	Hz
AQ				1988	
RG		1			sec
			1	99.6	
DW					usec
DE				6.50	usec
TE				02.3	
D1		2.00	000	0000	sec
D11	1	0.03	300	0000	sec
TD0				1	
	CHANI	NET.	f1		
	CHAN	NEL	f1	120	
NUC1	CHANI	NEL	f1	13C	
NUC1 P1				13C 9.80	usec
NUC1 P1 PLW1	5	8.00	000	13C 9.80 0000	usec W
NUC1 P1	5	8.00	000	13C 9.80	usec W
NUC1 P1 PLW1 SFO1	5)	8.00 00.6	000 655	13C 9.80 0000 0182	usec W MHz
NUC1 P1 PLW1	5)	8.00 00.6	000 555 f2	13C 9.80 0000 0182	usec W MHz
NUC1 P1 PLW1 SFO1	5)	8.00 00.6	000 555 f2	13C 9.80 0000 0182	usec W MHz
NUC1 P1 PLW1 SFO1 ======	5)	8.00 00.6	000 555 f2	13C 9.80 0000 0182	usec W MHz
NUC1 P1 PLW1 SFO1	5)	8.00 00.6	000 555 f2 val	13C 9.80 0000 0182 ===: tz16 1H	usec W MHz
NUC1 P1 PLW1 SFO1 	5 1 CHANI	8.00 00.6 NEL	000 555 f2 val	13C 9.80 0000 0182 === tz16 1H 0.00	usec W MHz
NUC1 P1 PLW1 SFO1 ====== CPDPRG2 NUC2 PCPD2 PLW2	56 10 CHANI	8.00 00.6 NEL V	000 555 f2 val	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000	usec W MHz ====
NUC1 P1 PLW1 SFO1 ====== CPDPRG2 NUC2 PCPD2 PLW2 PLW12	5 1 CHANI	8.00 00.6 NEL V	000 555 f2 val 900 509	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000	usec W MHz usec W
NUC1 P1 PLW1 SFO1 ====== CPDPRG2 NUC2 PCPD2 PLW2 PLW12 PLW12 PLW13	5 1 CHANI	8.00 00.6 NEL V 4.00 0.35	000 555 f2 val 900 509	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999	usec W MHz usec W W
NUC1 P1 PLW1 SFO1 ====== CPDPRG2 NUC2 PCPD2 PLW2 PLW12	5 1 CHANI	8.00 00.6 NEL V 4.00 0.35	000 555 f2 val 900 509	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000	usec W MHz usec W W
NUC1 P1 PLW1 SF01 	51 CHANI	8.00 00.6 NEL V 4.00 0.35 0.28	000 655 f2 wal 9000 509 342	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010	usec W MHz usec W W W MHz
NUC1 P1 PLW1 SF01 PLW2 PCPD2 PLW2 PLW2 PLW12 PLW13 SF02 F2 - Pro	51 CHANI	8.00 00.6 NEL V 4.00 0.35 0.28	000 555 f2 wal 9000 509 342 259	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010 amete	usec W MHz usec W W W MHz
NUC1 P1 PLW1 SF01 	51 CHANI	8.00 00.6 NEL V 4.00 0.35 0.28	000 555 f2 wal 9000 509 342 259	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010	usec W MHz usec W W W MHz
NUC1 P1 PLW1 SF01 PLW2 PCPD2 PLW2 PLW2 PLW12 PLW13 SF02 F2 - Pro	CHANN	8.00 00.6 NEL 4.00 0.35 0.28	000 555 f2 wal 9000 509 342 259	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010 amete	usec W MHz usec W W MHz
NUC1 P1 PLW1 SF01 	CHANN	8.00 00.6 NEL 4.00 0.35 0.28	000 555 f2 wal 9000 509 342 259	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010 amete 2768	usec W MHz usec W W MHz ers
NUC1 P1 P1W1 SF01 ====== CPDPRG2 NUC2 PCPD2 PLW2 PLW12 PLW13 SF02 F2 - Pro SI SF WDW	5; 1chani 1 4 cessi	8.00 00.6 NEL 4.00 0.35 0.28	000 555 f2 wal 9000 509 342 259	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010 amete 2768 0057	usec W MHz usec W W MHz ers
NUC1 P1 PLW1 SF01 CPDPRG2 NUC2 PCPD2 PLW2 PLW12 PLW12 PLW13 SF02 F2 - Pro SI SF WDW SSB	CHANN	8.00 00.6 NEL 4.00 0.35 0.28	000 555 f2 val 9000 509 342 259 par 3545	13C 9.80 0000 0182 === tz16 1H 0.00 0000 7000 8999 6010 amet 2768 0057 EM	usec W MHz usec W W MHz
NUC1 P1 P1W1 SF01 ====== CPDPRG2 NUC2 PCPD2 PLW2 PLW12 PLW13 SF02 F2 - Pro SI SF WDW SSB LB	CHANNI CHANNI 4 cessi	8.00 00.6 NEL 4.00 0.35 0.28	000 555 f2 val 9000 509 342 259 par 3545	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010 amete 2768 0057	usec W MHz usec W W MHz
NUC1 P1 PLW1 SF01 CPDPRG2 NUC2 PCPD2 PLW2 PLW12 PLW13 SF02 F2 - Pro SI SF WDW SSB LB GB	5; 1chani 1 4 cessi	8.00 00.6 NEL 4.00 0.35 0.28	000 555 f2 val 9000 509 342 259 par 3545	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010 amet 2768 0057 EM	usec W MHz usec W W MHz
NUC1 P1 PLW1 SF01 CPDPRG2 NUC2 PCPD2 PLW2 PLW12 PLW12 PLW13 SF02 F2 - Pro SI SF WDW SSB LB GB PC	CHANNI CHANNI 4 cessi	8.00 00.6 NEL 4.00 0.35 0.28	000 555 f2 val 9000 509 342 259 par 3545	13C 9.80 0000 0182 === tz16 1H 0.00 0000 7000 8999 6010 amet 2768 0057 EM	usec W MHz usec W W MHz
NUC1 P1 PLW1 SF01 CPDPRG2 NUC2 PCPD2 PLW2 PLW12 PLW13 SF02 F2 - Pro SI SF WDW SSB LB GB	CHANN	8.00 00.6 NEL 4.00 0.35 0.28	000 555 f2 val 9000 509 342 259 par 3545	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010 amet 2768 0057 EM	usec W MHz usec W W MHz
NUC1 P1 PLW1 SF01 CPDPRG2 NUC2 PCPD2 PLW2 PLW12 PLW12 PLW13 SF02 F2 - Pro SI SF WDW SSB LB GB PC	CHANN	8.00 00.6 NEL 4.00 0.35 0.28	000 555 f2 val 9000 509 342 259 par 3545	13C 9.80 0000 0182 ===: tz16 1H 0.00 0000 7000 8999 6010 amet 2768 0057 EM	usec W MHz usec W W MHz





SIF VIT VELLORE PH-10m 13C



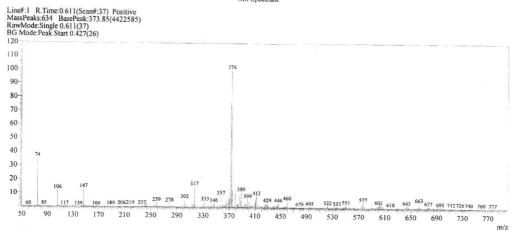
Scan time (sec) 29.77

Number of Sample Scans 24

Path of File D:\FTIR DATA	Filename 3.7A.0
Sample Name 10m	Sample Form WHITE SOLID
Date of Measurement 12/21/2014	Time of Measurement 12:43:37 PM
Resolution 4	Signal Gain, Sample
Number of Sample Scans 24	Scan time (sec) 29.81

LCMS-2010A DATA REPORT **SHIMADZU**

HO'


User Sample Inj. Volume Data Name

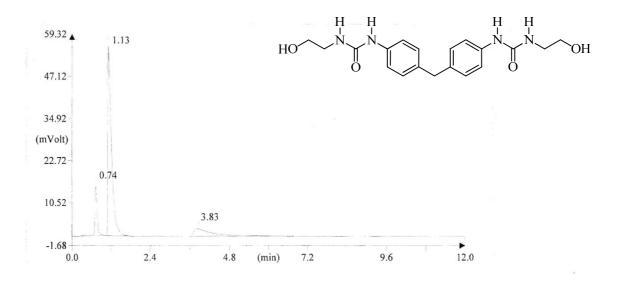
: Admin

Method Name

: 10a : 5.000 : G:\LCMSsolution\User\Data\PH-3.1A-APCI-POS1.qld : C:\LCMSsolution\User\Method\Copy of JAY-4-APCI.qlm

MS Spectrum

MS Peak Table Peak# R.Time 1 0.611 I.Time F.Time Area 0.427 0.843 513349669 513349669 A/H Mark %Total Name 9.83 100.00 100.00

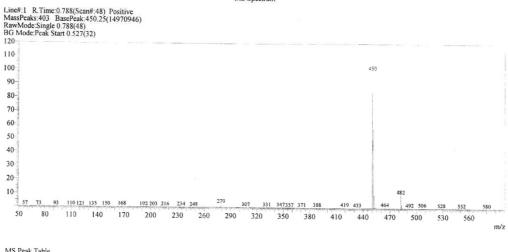

Base m/z Base Int. 373.85 4422585

FLASH EA 1112 SERIES CHN REPORT THERMO FINNIGAN

Method filename: Sample ID: Analysis type: Chromatogram filename: Sample weight:

C:\Program Files\Thermo Finnigan\Eager 300 for EA1112\DATA\Sys_data_ex

10a UnkNown UNK-27012015-3.dat 1.415


Element Name	Element %	Ret. Time
Nitrogen	14. 89	0. 74
Carbon	61. 36	1. 13
Hydrogen	6. 54	3. 83

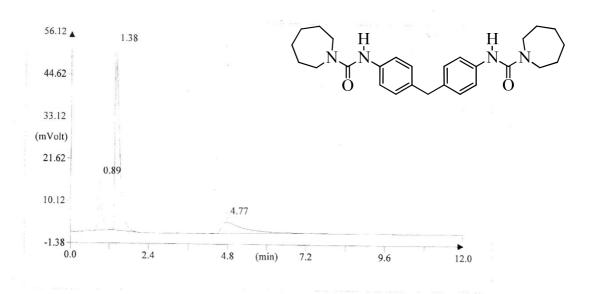
LCMS-2010A DATA REPORT **SHIMADZU**

User Sample Inj. Volume

Data Name Method Name : Admin
: 10m
: 5.000
: C:\LCMSsolution\User\Data\PH-3.7A-APCI-POS1.qld
: C:\LCMSsolution\User\Method\esi.qlm

MS Spectrum

A/H Mark %Total Name 24.84 100.00 100.00


Base m/z Base Int. 450.25 14970946

FLASH EA 1112 SERIES CHN REPORT THERMO FINNIGAN

C:\Program Files\Thermo Finnigan\Eager 300 for EA1112\DATA\Sys_data_ex

Method filename: Sample ID: Analysis type: Chromatogram filename: Sample weight:

10m UnkNown UNK-27012015-4.dat 1.172

Element Name	Element %	Ret. Time
Nitrogen Carbon Hydrogen	12. 41 72. 15 8. 16	0. 89 1. 38 4. 77