Supporting Information Org. Commun. 11:1 (2018) 53-61

Synthesis of natural phenylpropanoid esters via conventional chemical reactions

Flávio Valadares P. Borges¹, Roberto Mioso^{2*}, Luiz André A. Silva¹, José Maria Barbosa-Filho¹, Gabrielly Diniz Duarte³ and Luis Cezar Rodrigues⁴

¹ Post-Graduate Program in Natural Products and Bioactives, Federal University of Paraíba, João Pessoa, 58051-900, PB, Brazil

² Department of Chemistry, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017, Spain

³Department of Biotechnology, Federal University of Paraíba, João Pessoa, 58051-900, PB, Brazil ⁴Post-Graduate Program in Development and Technological Innovation in Medicines, Federal University of Paraíba, João Pessoa, 58051-900, PB, Brazil

Table of Contents	Page
Figure S1. ¹³ C-NMR (δ , 50.30 MHz, CDCl ₃) – (–)-Bornyl benzoate (5)	2
Figure S2. ¹ H-NMR (δ , 200 MHz; CDCl ₃) – (–)-Bornyl benzoate (5)	3
Figure S3. ¹³ C-NMR (δ , 50.30 MHz, CDCl ₃) – (–)-Bornyl salicylate (4)	4
Figure S4. ¹ H-NMR (δ , 200 MHz; CDCl ₃) – (–)-Bornyl salicylate (4)	5
Figure S5. ¹³ C-NMR (δ , 50.30 MHz, CDCl ₃) – (–)-Bornyl <i>trans-p</i> -coumarate (1)	6
Figure S6. ¹ H-NMR (δ , 200 MHz; CDCl ₃) – (–)-Bornyl <i>trans-p</i> -coumarate (1)	7
Figure S7. ¹³ C-NMR (δ , 50.30 MHz, CDCl ₃) – (–)-Bornyl <i>trans</i> -ferulate (7)	8
Figure S.8. ¹ H-NMR (δ , 200 MHz; CDCl ₃) – (–)-Bornyl <i>trans</i> -ferulate (7)	9
Figure S9. ¹³ C-NMR (δ , 50.30 MHz, CDCl ₃) – (–)-Bornyl <i>cis</i> -ferulate (6)	10
Figure S10. ¹ H-NMR (δ , 200 MHz; CDCl ₃) – (–)-Bornyl <i>cis</i> -ferulate (6)	11
Figure S11. ¹³ C-NMR (δ, 50.30 MHz, CDCl ₃) – (–)-Bornyl <i>trans</i> -3,4-	12
(methylenedioxy)cinnamate (8)	
Figure S12 . ¹ H-NMR (δ, 200 MHz; CDCl ₃) – (–)-Bornyl <i>trans</i> -3,4-	13
(methylenedioxy)cinnamate (8)	
Figure S13. ¹³ C-NMR (δ , 50.30 MHz, CDCl ₃)– α -Terpineol chloroacetate	14
Figure S14. ¹ H-NMR (δ , 200 MHz; CDCl ₃) – α -Terpineol chloroacetate	15
Figure S15. ¹³ C-NMR (δ , 50.30 MHz, CDCl ₃) – α -Terpinyl <i>trans</i> -caffeate (3)	16
Figure S16. ¹ H-NMR (δ , 200 MHz; CDCl ₃) – α -Terpinyl <i>trans</i> -caffeate (3)	17

Figure S1. ¹³C-NMR (δ , 50.30 MHz, CDCl₃) – (–)-Bornyl benzoate (5)

Figure S2. ¹H-NMR (δ , 200 MHz; CDCl₃) – (–)-Bornyl benzoate (5)

Figure S3. ¹³C-NMR (δ , 50.30 MHz, CDCl₃) – (–)-Bornyl salicylate (4)

Figure S4. ¹H-NMR (δ , 200 MHz; CDCl₃) – (–)-Bornyl salicylate (4)

Figure S9. ¹³C-NMR (δ, 50.30 MHz, CDCl₃) – (–)-Bornyl *cis*-ferulate (6)

Figure S10. ¹H-NMR (δ , 200 MHz; CDCl₃) – (–)-Bornyl *cis*-ferulate (6)

Figure S11. ¹³C-NMR (δ, 50.30 MHz, CDCl₃) – (–)-Bornyl *trans*-3,4-(methylenedioxy)cinnamate (8)

Figure S12. ¹H-NMR (δ, 200 MHz; CDCl₃) – (–)-Bornyl *trans*-3,4-(methylenedioxy)cinnamate (8)

Figure S13. ¹³C-NMR (δ , 50.30 MHz, CDCl₃)– α -Terpineol chloroacetate

Figure S14. ¹H-NMR (δ , 200 MHz; CDCl₃) – α -Terpineol chloroacetate

Figure S15. ¹³C-NMR (δ , 50.30 MHz, CDCl₃) – α -Terpinyl *trans*-caffeate (3)

Figure S16. ¹H-NMR (δ , 200 MHz; CDCl₃) – α -Terpinyl *trans*-caffeate (3)