

Rec. Nat. Prod. 6:2(2012) 121-126

records of natural products

Cytochalasin H2, a New Cytochalasin, Isolated from the Endophytic Fungus *Xylaria* sp. A23

Yu Li¹, Chunhua Lu¹, Yaojian Huang², Yaoyao Li^{*1} and Yuemao Shen¹

¹School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250000, P. R. China

²School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, P. R. China

(Received April 16, 2011; Revised June 29, 2011; Accepted June 30 2011)

Abstract: A new natural product, cytochalasin H2 (1), together with cytochalasin H (2) were obtained from the agar cultures of the strain *Xylaria* sp. A23, which was isolated from *Annona squamosa*. The chemical structures of them were elucidated by spectroscopic and mass spectrometric analyses, including 1D-, 2D-NMR and HR-FTMS. Compound 1 showed week cytotoxicity against HeLa and 293T cell lines by MTT assay.

Keywords: Cytochalasin H2; cytochalasin H; spectroscopic analyses.

1. Introduction

Annona squamosa L. is native to tropic America, as a folk medicine, it has significant curative effects on dysentery, hysteria, and tumor¹. A huge number of biological active compounds have been isolated, including alkaloids, annonaceous acetogenins, cyclic peptides, and *ent*-diterpenoids¹⁻⁵. As the endophytes may play important roles in the synthesis or transformation of these bioactive compounds, we embarked on the isolation of endophytic fungi from *Annona squamos*⁶ and the search for novel bioactive compounds from them. Here, we report the isolation and structure elucidation of a novel compound cytochalasin H2 (1) and a known one cytochalasin H (2)⁷ from the endophytic fungus *Xylaria* sp. A23 of *Annona squamosa*.

The article was published by Academy of Chemistry of Globe Publications www.acgpubs.org/RNP © Published 10/23/2011 EISSN:1307-6167

^{*} Corresponding author: <u>liyaoyao@sdu.edu.cn</u>; Tel: 086-531-88382176

2. Materials and Methods

2.1 General

Column chromatography (CC): silica gel (200-300 mesh; Qingdao Marine Chemical Factory, Qingdao, P. R. China), and RP-18 (Merck)) were used. Medium Pressure Liquid Chromatography (MPLC): BÜCHI C-605. TLC: precoated silica gel GF254 plates (0.20-0.25 mm, Qingdao Marine Chemical Factory). Optical rotations were obtained on a Perkin-Elmer 341 polarimeter with MeOH as solvent. The IR spectra were measured in KBr on a Nicolet FT-IR 360. HR-FT-MS data were acquired by using Thermo Scientific LTQ Orbitrap mass spectrometer. ¹H- and ¹³C-NMR Spectra: Bruker Avance 600 MHz NMR spectrometer.

2.2. Microorganism Material

The strain A23 was isolated from leaves of *Annona squamosa* L. collected in Xiamen University, Fujian, China. The ITS rDNA sequencing (GenBank accession number: EU009996) was performed to characterize it as *Xylaria* sp., and named A23. The blast query of the NCBI database yielded *Xylaria* strain VegaE4-79 as the closest match to the ITS rDNA of A23 (97%).

2.3. Fermentation and Isolation

The fermentation was performed on PDA (0.5 litre) agar plates for 7 days at 28°C. The culture was diced and extracted with AcOEt/MeOH/AcOH (80 : 15 : 5). The crude extract was partitioned between MeOH and petroleum ether. The MeOH layer was concentrated in vacuum to afford a crude brown syrupy extract (450 mg). It (450 mg) was subjected to MPLC (*RP-18* (30 g); MeOH/H₂O, 1 : 1) to afford *Fr.1* (91.4 mg). This was further subjected to MPLC (*RP-18* (30 g); MeOH/H₂O, 3 : 2, and MeOH) to obtain **2** (12.6 mg) and *Fr.1.b.* (18.7 mg), which was further subjected to CC (SiO₂; petroleum ether/ethyl acetate, 3 : 1) to obtain **1** (5.8 mg).

Figure 1. The chemical structures of compounds 1/2.

3. Results and Discussion

3.1. Structure elucidation

Compound **1** was obtained as white powder. The molecular formula of **1** was determined to be $C_{32}H_{43}NO_5$ by its HR-FTMS (m/z 544.3031 [M + Na]⁺) and NMR data (Table 1). $[\alpha]_D^{20} = 5.4$ (c = 0.52, MeOH). The IR spectrum showed the absorptions for ester carbonyl groups (1740cm⁻¹), and amide carbonyl groups (1680cm⁻¹). The ¹³C NMR spectrum of **1** displayed 32 carbon signals for four

		12	, , , , , , , , , , , , , , , , , , ,
Position	¹ H	¹³ C	HMBCs
1		174.2 (s)	
2	7.05 (s)		48.7 (<i>d</i>), 52.0 (<i>s</i>)
3	3.30 (<i>m</i>)	53.2 (<i>d</i>)	32.3 (<i>d</i>)
4	2.18 (dd, J = 2.9, 5.2)	48.7 (<i>d</i>)	76.7 (<i>d</i>), 150.5 (<i>s</i>)
5	2.63 (<i>m</i>)	32.3 (d)	12.7 (q), 48.7 (d), 53.2 (d), 150.5 (s)
6		150.5 (s)	
7	3.82 (d, J = 10.1)	70.9 (d)	
8	2.93 (t, J = 10.1)	47.1 (<i>d</i>)	52.0 (s), 70.9 (d), 76.7 (d), 128.5 (d), 135.9 (d)
9		52.0 (s)	
10α	2.95 (dd, J = 5.9, 13.1)	44.7 (<i>t</i>)	48.7 (<i>d</i>), 52.0 (<i>s</i>), 129.7 (<i>d</i>), 137.7 (<i>s</i>)
10 <i>β</i>	2.74 (dd, J = 8.0, 13.1)		48.7 (<i>d</i>), 52.0 (<i>s</i>), 53.2 (<i>d</i>), 128.4 (<i>d</i>), 137.7 (<i>s</i>)
11	0.54 (d, J = 6.8)	12.7(q)	32.3 (<i>d</i>), 48.7 (<i>d</i>), 150.5 (<i>s</i>)
12a	4.91 (s)	111.5(t)	32.3 (<i>d</i>), 70.9 (<i>d</i>)
12b	5.15 (s)		32.3 (<i>d</i>), 70.9 (<i>d</i>), 150.5 (<i>s</i>)
13	5.73 (dd, J = 9.6, 15.5)	128.5 (d)	43.1 (<i>t</i>), 47.1 (<i>d</i>)
14	5.27 (ddd, J = 4.9, 10.8,	135.9 (d)	43.1 (<i>t</i>), 47.1 (<i>d</i>), 111.5 (<i>t</i>)
	15.5)		
15α	1.70 (dd, J = 10.8, 23.2)	43.1 (<i>t</i>)	28.1 (<i>d</i>), 54.0 (<i>t</i>), 128.5 (<i>d</i>), 135.9 (<i>d</i>),
15β	1.96 (dd, J = 4.8, 12.5)		25.7 (q), 28.1 (d), 54.0 (t), 128.5 (d), 135.9 (d)
16	1.84 (<i>m</i>)	28.1 (d)	43.1 (<i>t</i>)
17α	1.81 (<i>m</i>)	54.0 (<i>t</i>)	43.1 (<i>t</i>)
17β	1.52 (dd, J = 3.4, 13.6)		72.8(s)
18		72.8(s)	
19	5.88 (dd, J = 2.3, 15.5)	126.0(d)	72.8(s), 76.7(d), 128.5(d)
20	5.53 (dd, J = 2.3, 15.5)	138.2(d)	30.5(q), 76.7(d), 126.0(d)
21	5.56 (d, J = 2.3)	76.7 (<i>d</i>)	30.5(q), 47.1(d), 48.7(d), 52.0(s), 76.7(d),
			126.0 (<i>d</i>), 138.2 (<i>d</i>),
22	1.00 (t, J = 6.9)	25.7(q)	28.1 (d), 43.1 (t), 54.0 (t)
23	1.26(s)	30.5(q)	28.1 (d), 54.0 (t), 72.8 (s)
24		172.2(s)	
25	2.57 (<i>m</i>)	35.9 (<i>t</i>)	13.2 (q), 18.6 (t)
26	1.82 (<i>m</i>)	18.6 (<i>t</i>)	43.1 (<i>t</i>)
27	1.04 (t, J = 7.4)	13.2(q)	18.6 (<i>t</i>), 35.9 (<i>t</i>)
28		137.7(s)	
29	7.24 (<i>m</i>)	129.7 (d)	44.7 (t), 126.5 (d), 129.7 (d)
30	7.31 (<i>m</i>)	128.4 (d)	128.4 (<i>d</i>), 137.7 (<i>s</i>)
31	7.24 (<i>m</i>)	126.5 (d)	129.7 (<i>d</i>)
32	7.31 (<i>m</i>)	128.4 (d)	128.4 (<i>d</i>), 137.7 (<i>s</i>),
33	7.24 (<i>m</i>)	129.7 (d)	44.7 (t), 126.5 (d), 129.7 (d)
7-OH	3.48 (s)		54.0(t), 174.2(s)

methyls, six methylenes, sixteen methines, and six quaternary carbon atoms, including two carbonyl groups, one at δ 174.2 C(1), and the other at δ 172.2 C(24).

Table 1. ¹H and ¹³C NMR data for **1** (at 600/150 MHz in Acetone- d_6), δ in ppm, J in Hz).

The HMBCs from H-C(32) to C(28), and H-C(29) to C(10), along with the ¹H, ¹H-COSYs H-C(29) \leftrightarrow H-C(30) \leftrightarrow H-C(31) \leftrightarrow H-C(32) \leftrightarrow H-C(33), and H-C(3) \leftrightarrow H-C(10), let to the establishment of fragment **a**. Fragment **b** was assigned based on the HMBCs from Me(11) to C(4), C(5) and C(6), CH₂(12) to C(6) and C(7), CH (8) to C(1), C(4) and C(9), and the ¹H, ¹H-COSYs H-C(7) \leftrightarrow H-C(8). Meanwhile, the HMBCs from Me(22) to C(15), C(16) and C(17), Me(23) to C(17) and C(18), CH(14) to C(15), CH(19) to C(18), along with the ¹H, ¹H-COSYs H-C(13) \leftrightarrow H-C(14), H-C(15) \leftrightarrow H-C(16) \leftrightarrow H-C(17), H-C(19) \leftrightarrow H-C(20) \leftrightarrow H-C(21), H-C(25) \leftrightarrow H-C(26) \leftrightarrow H-C(27), let to the establishment of

fragment **c**. Fragments **a** and **b** were connected on the basis of the HMBCs from H-C(3) to C(5), and ¹H, ¹H-COSYs H-C(3) \leftrightarrow H-C(4). The connection of fragments **b** and **c** was identified from the HMBCs from the H-C(21) to C(4), and the ¹H, ¹H-COSYs H-C(8) \leftrightarrow H-C(13). Finally, the lactam bond was confirmed by the HMBC correlations from NH(2) to C(8) and C(9) (Figure 2).

Figure 2. ¹H-¹H COSY correlations and selected HMBC correlations of 1.

The relative configuration of **1** was established from the NOESY spectrum. The presence of NOE correlations H-C(3) \leftrightarrow H-C(7) \leftrightarrow H-C(11) \leftrightarrow H-C(21) \leftrightarrow H-C(23) indicated the α -orientation of these protons. The NOESY cross-peaks between H-C(4) \leftrightarrow H-C(8) \leftrightarrow H-C(14) \leftrightarrow H-C(16) established the β -orientation of H-C(4), H-C(8), H-C(14) and H-C(16) (Figure 3). Therefore, compound **1** was determined to be (3*S*,3a*R*,4*S*,6*S*,6a*R*,7*E*,10*S*,12*R*,13*E*,15*R*,15[†]*R*)-3-benzyl-6,12-dihydroxy-4,10,12-trimethyl-5-methylene-1-oxo-2,3,3a,4,5,6,6a,9,10,11,12,15-dodecahydro-1*H*-cycloundeca[*d*]isoindol-15-yl butyrate, named cytochalasin H2.

Figure 3. Key NOESY correlations of cytochalasin H2.

3.2. Cytotoxicity and Antimicrobial activity

HeLa cells were cultured in Dulbecco's modified Eagle's media (DMEM) supplemented with 10% fetal bovine serum. The cells were maintained at 37° C in a humidified atmosphere at 95% air and 5% CO₂. Cell viability was measured by MTT assay⁸. The antibacterial activities of **1** were tested against *Bacillus subtilis* (CMCC (B) 63501) using slip method.

Compound 1 exhibited week cytotoxicity against HeLa and 293T cells (1.0 μ g/mL, 25.04% and 32.8%, respectively), and induced cell contraction in both cell lines (Figure 4). Compound 1 had no effect on the growth of tested bacteria at 20 μ g/disc.

Figure 4. The contraction of HeLa and 293T cells by the treatment of 1 for 72 h.

The cytochalasins are a group of fungal secondary metabolites, related by structure and biological activity. Cytochalasins have the cytotoxic activities include effection of actin filament⁹. Cytochalasin H was first isolated from *Phomopsis* sp. in 1970's¹⁰, which effects the cytoskeletal reorganisation as an inhibitor and shows moderate filament capping activity¹¹. The bioactivities of cytochalasin H2 (1) need to be further explored.

Acknowledgments

This work was financially supported by Key Project of Chinese Ministry of Education (306010).

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

References

- [1] Y. L. Yang, K. F. Hua, P. H. Chuang, S. H. Wu, K. Y. Wu, F. R. Chang and Y.C. Wu (2008). New cyclic peptides from the seeds of *Annona squamosa* L. and their anti-inflammatory activities, *J. Agr. Food. Chem.* **56**(2), 386-392.
- [2] M. J. Chavan, P. S. Wakte and D. B. Shinde (2010). Analgesic and anti-inflammatory activity of Caryophyllene oxide from *Annona squamosa* L. bark, *Phytomedicine*. 17(2), 149-151.
- [3] C. C. Liaw, Y. L. Yang, M. Chen, F. R. Chang, S. L. Chen, S. H. Wu and Y. C. Wu (2008). Monotetrahydrofuran annonaceous acetogenins from *Annona squamosa* as cytotoxic agents and calcium ion chelators, *J. Nat. Prod.* 71(5), 764-771.
- [4] S. H. Yeh, F. R. Chang, Y. C. Wu, Y. L. Yang, S. K. Zhuo and T. L. Hwang (2005). An antiinflammatory ent-kaurane from the stems of *Annona squamosa* that inhibits various human neutrophil functions, *Planta. Med.* **71**(10), 904-909.

- [5] Y. L. Yang, F. R. Chang, C. C. Wu, W. Y. Wang and Y. C. Wu (2002). New ent-kaurane diterpenoids with anti-platelet aggregation activity from *Annona squamosa*, *J. Nat. Prod.* **65**(10), 1462-1467.
- [6] X. Lin, Y. J. Huang, Z. H. Zheng, W. J. Su, X. M. Qian and Y. M. Shen (2010). Endophytes from the pharmaceutical plant, *Annona squamosa*: isolation, bioactivity, identification and diversity of its polyketide synthase gene, *Fungal Divers*. **41**(1), 41-51.
- [7] Y. Tao, X. Zeng, C. Mou, J. Li, X. Cai, Z. She, S. Zhou and Y. Lin (2008). ¹H and ¹³C NMR assignments of three nitrogen containing compounds from the mangrove endophytic fungus (ZZF08), *Magn Reson Chem.* 46(5), 501-505.
- [8] T. Mosmann (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, *J. Immunol. Methods*. **65**(1-2), 55-63.
- [9] P. Natarajan, J. A. May, H. M. Sanderson, M. Zabe, P. Spangenberg and S. Heptinstall (2000). Effects of cytochalasin H, a potent inhibitor of cytoskeletal reorganisation, on platelet function, *Platelets* 11(8), 467-476.
- [10] M. A. Beno, R. H. Cox, J. M. Wells, R. J. Cole, J. W. Kirksey and G. G. Christoph (1977). Structure of a new cytochalasin, cytochalasin H or kodo-cytochalasin-1, J. Am. Chem. Soc. 99(12), 4123-4130.
- [11] S. Xu, H. M. Ge, Y. C. Song, Y. Shen, H. Ding and R. X. Tan (2009). Cytotoxic Cytochalasin Metabolites of Endophytic Endothia gyrosa, *Chem Biodivers* 6(5), 739-745.

© 2011 Reproduction is free for scientific studies