Chemical Constituents from *Erigeron bonariensis* L. and their Chemotaxonomic Importance

Aqib Zahoor¹, Hidayat Hussain¹,², Afsar Khan³, Ishtiaq Ahmed¹, Viqar Uddin Ahmad⁴ and Karsten Krohn¹

¹Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
²Department of Biological Sciences and Chemistry, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Maʿz, Nizwa, Sultanate of Oman
³Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad-22060, Pakistan.
⁴H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.

(Received September 11, 2011; Revised May 9, 2012 Accepted June 15, 2012)

Abstract: The study of the chemical constituents of the whole plant of *Erigeron bonariensis* (L.) has resulted in the isolation and characterization of a new and nine known compounds. The known compounds were identified as stigmasterol (1), freideline (2), 1,3-dihydroxy-3R,5R-dicaffeoyloxy cyclohexane carboxylic acid methyl ester (3), 1R,3R-dihydroxy-4S,5R-dicaffeoyloxy cyclohexane carboxylic acid methyl ester (4), quercitin (5), caffeic acid (6), 3-(3,4-dihydroxyphenyl)acrylic acid 1-(3,4-dihydroxyphenyl)-2-methoxycarbonyethyl ester (7), benzyl O-β-D-glucopyranoside (8), 2-phenylethyl-β-D-glucopyranoside (9), and 3-(3,4-dihydroxyphenyl)-2-methoxycarbonyethyl ester (10). The aromatic glycoside, erigoside G (7) is reported as new natural compound. The above compounds were individually identified by spectroscopic analyses and comparisons with reported data. The chemotaxonomic studies of isolated compounds have been discussed.

Keywords: natural products; chemotaxonomic studies.

1. Plant Source

Erigeron bonariensis (L.) is locally called “gulava” or “mrich booti” and is traditionally used in urine problems. It is a common weed distributed from plains to ca. 1800 m height in North-West Frontier Province, Punjab and Balochistan in Pakistan [1]. The whole plants of *Erigeron bonariensis* (L.) (Asteraceae) were collected from Oghi, Mansehra, Pakistan, in November 2002, and authenticated by Mr. Jan Alam (Taxanomist) at the Botany Department, University of Karachi, Pakistan. A voucher specimen (KUH G. H. No. 68220) has been deposited at the herbarium of the above Department.

2. Previous Studies

Quercetin and quercitrin were identified from the ether and ethyl acetate soluble fraction of E. bonariensis [2].

3. Present Study

The air-dried whole plant (24 kg) were extracted with MeOH and then dried in vacuo. The crude extract was suspended in water, and successively extracted with n-hexane, CHCl₃, EtOAc, and n-BuOH in turn. The CHCl₃ extract (108 g) was subjected to silica gel column eluting with n-hexane/CHCl₃ yielded stigmasterol (1, 16.0 mg) [3], freideline (2, 45.0 mg) [4], 1,3-dihydroxy-3R,5R-dicaffeoyloxy cyclohexane carboxylic acid methyl ester (3, 8.0 mg) [4], 1R,3R-dihydroxy-4S,5R-dicaffeoyloxy cyclohexane carboxylic acid methyl ester (4, 3.0 mg) [4], quercitin (5, 10.0 mg) [5], caffeic acid (6, 15.0 mg) [6], erigoside G (7, 3.0 mg) [7], and 3-(3,4-Dihydroxyphenyl)acrylic acid 1-(3,4-dihydroxyphenyl)-2-methoxycarbonyethyl ester (8, 7.0 mg) [8], benzyl O-β-D-glucopyranoside (9, 8.0 mg) [9] and 2-phenylethyl-β-D-glucopyranoside (10, 16.0 mg) [10]. The isolated compounds were identified by comparison

¹Corresponding author: E- Mail: Hidayat110@gmail.com (H. Hussain), Phone +49-5251-602182.
of their physical and spectroscopic data (1H and 13C NMR) with those reported in the literature (Figure 1). The new compound erigoside G (7) was obtained as brown gum. The UV spectrum exhibited absorption maxima at 263 nm. Analysis of the HREIMS gave a molecular ion at m/z 302.1112 [M]+, corresponding to the molecular formula C13H16O6, supported by the 1H NMR, 13C NMR and DEPT analysis. From the 1H–1H-COSY, two protons appeared at δ 6.91 (1H, dd, J = 7.5, 2.0 Hz, H-4) and δ 6.81 (1H, d, J = 7.5 Hz, H-5) were coupling to one another while one proton appeared at δ 7.20 (1H, d, J = 2.0 Hz, H-2), suggesting the presence of ABX spin system of three aromatic protons. Proton appeared at δ 7.20 (1H, d, J = 2.0 Hz, H-2) showed HMBC interaction with carbons appeared at δ 131.2, 65.3 and 123.8, while proton at δ 6.91 (1H, dd, J = 7.5, 2.0 Hz, H-4) showed HMBC interaction with carbons appeared at δ 149.9 and 131.2. The signals for β-D-glucopyranoside moiety were observed at δ 104.5 (C-1), 149.9 (C-6), 131.2, 65.3 and 123.8, while proton at δ 6.91 (1H, d, J = 7.5 Hz, H-4) showed HMBC interaction with carbons appeared at δ 149.9 and 131.2, suggesting the structure consist on 3,4-dihydroxybenzaldehyde alcohol system. A signal at δ 4.77 (1H, d, J = 7.5 Hz, H-1’) was assigned to be the anomeric proton of glucopyranoside moiety. The anomeric configuration was assigned to be β on the basis of large coupling constant. In 13C-NMR spectrum, the signals for β-D-glucopyranoside moiety were observed at δ 104.5, 75.0, 77.7, 71.4, 78.4, and 62.6. The HMBC interaction of anomeric proton δ 4.77 (1H, d, J = 7.5 Hz, H-1’) with C-1 confirmed the structure of compound 7 as 3,4-dihydroxybenzyl alcohol-3-O-β-D-glucopyranoside (erigoside G) (Figure 1). The aromatic glycoside (7) is new as a natural product but has been reported as a bio transformed product of 3,4-dihydroxybenzaldehyde by hairy root culture of Pharbitis nil [7].

Erigoside G (7): Brown gum. UV (CH3Cl2) λmax nm (log ε): 263 (2.10). IR (KBr) νmax: 3200, 2963, 1606, 1465, 1061 cm−1. 1H NMR (600 MHz, CD3OD): δ 3.40 (1H, t, J = 9.5 Hz, H-4’), 3.41 (1H, m, H-5’), 3.46 (1H, d, J = 9.0 Hz, H-3’), 3.49 (1H, s, H-7), 3.72 (1H, dd, J = 12.5, 5.0 Hz, H-6’), 3.90 (1H, dd, J = 12.5, 2.0 Hz, H-6’), 4.48 (2H, s, H-7), 4.77 (1H, d, J = 7.5 Hz, H-1’), 6.81 (1H, d, J = 7.5 Hz, H-5), 6.91 (1H, d, J = 7.5, 2.0 Hz, H-4), 7.20 (1H, d, J = 2.0 Hz, H-2). 13C NMR (CD3OD) δ: 62.6 (C-6’), 65.1 (C-7), 71.4 (C-4’), 75.0 (C-2’), 77.7 (C-3’), 78.4 (C-5’), 104.5 (C-1’), 117.0 (C-2), 118.2 (C-5), 123.8 (C-4), 134.7 (C-3), 146.8 (C-6), 147.9 (C-1). HREIMS: m/z 302.1112 [M]+ (Calcd. 302.1002 for C13H16O6).

Figure 1. Selected 1H–1H COSY and HMBC correlations of compound 7.

4. Chemotaxonomic significance

Erigeron is a genus of about 390 species of flowering plants in the family Asteraceae. It represents one of the foremost examples of intercontinental plant invasions that have resulted in a number of taxonomic problems, especially in distinguishing it from Conyza [11]. We have previously investigated the title species and considered to be a synonym of Conyza bonariensis (L.) [12]. But actually Erigeron and Conyza are two different genera [11]. From previous [12] as well as present investigation, on the basis of chemotaxonomy we have concluded that the title species is Erigeron bonariensis. Because we consider that the phenolic constituents and caffeoyl derivatives may indicate it has a closer relationship to the genus Erigeron than the other species of Conyza. The flavonoids, caffeoyl derivatives and triterpenes identified here are in agreement with the chemical profile of the genus Erigeron (Table 1). Compounds 1-6 identified have already been isolated from Erigeron species as shown in previous studies, specially frideline (2) and their derivatives which seem to be characteristic secondary metabolites of the genus Erigeron (see Table 1).
Caffeoylquinic acids are widespread among Asteraceae, and there methyl esters 3 and 4 have already been isolated from the E. breviscapus [13]. This is the first report of compounds 8-10 in plants of the genus Erigeron. This might well be explained since most of the previous studies focused on medium polarity extracts of Erigeron. Isolation of compound 10 was also reported from Mikania hirsutissima and Gymnaster koreiensis of Asteraceae [14,15]. Similarly isolation of compound 9 was reported from Helichrysum conglobatum and Baccharis dracunculifolia of the same family [16,17] which is particularly interesting since this strengthens the chemotaxonomic relationship of genus Erigeron and Helichrysum and Baccharis. Compound 8 is an uncommon compound and was previously isolated only from Isodon excisus [8] but it is a caffeoyl conjugate proving the agreement of given subject with Asteraceae. Also presences of quercitrin (5) [5], and absence of pyromeconic acid and its derivatives provides the chemotaxonomic difference among E. bonariensis L. and other Erigeron species [2]. E. bonariensis L. represents one of the foremost examples of intercontinental plant invasions that have resulted in a number of taxonomic problems, especially in distinguishing it from Conyza Less. (Asteraceae) [11]. Previous phytochemical studies on Conyza species have led to the isolation of about flavonoids mainly including rutin, quercetin-3-O-glucoside, and quercetin [18]. In contrast, the plants belonging to Erigeron are described as containing flavonoids (scutellarin as the major components) (Table 1) [19-21], caffeoyl derivatives (Table 1), which are regarded as the characteristic constituents of the genus. Finally, it should be noted that this chemotaxonomic study (including Table 1) could be helpful for a better understanding in regard to the controversial taxonomy of the genus Erigeron, whose taxonomic classification have been altered by the establishment of synonyms and the transference of plants from and to the genus [22].

Table 1. Flavonoids, triterpenes, caffeoylic derivatives, and steroids isolated from genus Erigeron

<table>
<thead>
<tr>
<th>Chemical Constituents</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaempferol</td>
<td>E. multiradiatus [23]</td>
</tr>
<tr>
<td>5,7,4′-Trihydroxyflavanone</td>
<td>E. multiradiatus [24]</td>
</tr>
<tr>
<td>Quercetin</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>7-Hydroxy-4′,5-dimethoxyflavone,</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Quercetrin</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>3,5,6,4′-Tetrahydroxy-7-methoxyflavone</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Apigenin</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Apigenin-7-O-β-D-glucopyranoside</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>4′,5-dimethoxypigenin,</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>5,4′-Dihydroxyflavone-7-O-β-D-pyranlyconurate butyl ester</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Scutellarin</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Apigenin-7-O-β-D-glucuronide</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Plantagin</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Scutellarein-7-O-β-D-glucoside</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Wogonin</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Luteolin</td>
<td>E. breviscapus [25]</td>
</tr>
<tr>
<td>Triterpenes</td>
<td></td>
</tr>
<tr>
<td>β-Amyrin</td>
<td>E. acer [26], E. sumatrensis [32]</td>
</tr>
<tr>
<td>α-Amyrin</td>
<td>E. acer [26], E. sumatrensis [32]</td>
</tr>
<tr>
<td>28,23,28-Trihydroxy-12-oleanene acetonide</td>
<td>E. acer [26], E. sumatrensis [32]</td>
</tr>
<tr>
<td>Taraxerol</td>
<td>E. acer [26], E. sumatrensis [32]</td>
</tr>
<tr>
<td>Lupeol</td>
<td>E. acer [26], E. sumatrensis [32]</td>
</tr>
<tr>
<td>Friedelina</td>
<td>E. acer [26], E. sumatrensis [32]</td>
</tr>
<tr>
<td>Epifriedelinalol</td>
<td>E. acer [26], E. sumatrensis [32]</td>
</tr>
<tr>
<td>Faramanol</td>
<td>E. acer [26], E. sumatrensis [32]</td>
</tr>
<tr>
<td>24-Methylenelanost-8-en-3-β-ol</td>
<td>E. acer [26], E. sumatrensis [32]</td>
</tr>
</tbody>
</table>
Glutinol
Schottenol
Simiareol
Steroids
Ergosterol peroxide

Stigmasterol
Stigmat-5-ene-3β,7α-ol
Stigmat-4-ene-3β,6α-ol
Stigmat-7,24-dien-3β-ol
Stigmat-7-en-3β-ol
α-Spaministerol

Caffeoyl derivatives
Caffeic acid
1,5-Dicaffeoylquinic ester
3,5-Dicaffeoylquinic ester
4,5-Dicaffeoylquinic ester
Ergoster A
Ergoster B
Ergeroside
6-O-Caffeylegeroside
6'-O-Caffeylerigeroside
Methylcaffeate

Miscellaneous aromatic compounds
p-Hydroxybenzoic acid
1-Hydroxy-2,3,5-trimethoxyxanthone
3,5-Dimethoxy-4-hydroxy benzene carboxylic acid methyl ester
Vanillic acid
Scopeletin
Isoscopeletin
3,5-Dimethoxy benzene carboxylic acid-4-O-β-D-pyranoglucose
Emodin
Pyremonic acid

Acknowledgment. We wish to gratefully acknowledge the financial support of the Higher Education Commission (HEC), Pakistan to various scholars.

References
Chemical Constituents from *Erigeron bonariensis* L.

380

