Two New Monoterpenes from *Tithonia diversifolia* and Their Anti-Hyperglycemic Activity

Xia Li¹, Guanghui Huang¹², Guijun Zhao¹, Wansheng Chen³, Junli Li¹² and Lianna Sun¹

¹School of Pharmacy, Second Military Medical University, Guohe Road 325#, Shanghai 200433, P.R China;
²Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, Fujian, PR China
³Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, P.R China

(Received January 10, 2013; Revised June 21, 2013; Accepted July 12, 2013)

Abstract: Two new monoterpenes: ((1S,2R,3R,5S)-2-hydroxymethyl-6,6-dimethylbicyclo[3.1.1]heptane-2,3-diol (1) and (3R)-6,6-dimethyl-4-methylenebicyclo[3.1.1]heptane-1,3-diol-3-O-β-D-glucopyranoside (2), along with three known compounds, namely, sobrerol (3), (1R,2S,5S)-2,8-p-menth-diol (4) and (1R,5S)-10-hydroxyverbenon (5), were isolated from aerial part of *Tithonia diversifolia*. Their structures were determined on the basis of spectroscopic analyses (IR, HR-ESI-MS/MS, 1D/2D NMR). Under the concentration of 10 µg/mL, compounds 1 and 3 significantly increased glucose uptake in 3T3-L1 adipocytes without significant toxic effects *in vitro*.

Keywords: *Tithonia diversifolia*; Monoterpene; 3T3-L1 adipocytes; Anti-hyperglycemic activity.

1. **Plant Source**

Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae: Heliantheae), known as Mexican sunflower, is a native plant of Mexico and Central America [1]. As our continuing research on antidiabetic active metabolites from *T. diversifolia*, we report the isolation and identification of two new monoterpenes and three known monoterpenes. Furthermore, the anti-hyperglycemic activities of compounds 1–5 were evaluated for glucose uptake in 3T3-L1 adipocytes.

The aerial parts of *T. diversifolia* (Hemsl.) A. Gray were collected in Mengzi of Yunnan province, China in September 2007 and identified by Prof. Wansheng Chen (Department of Pharmacy, Changzheng Hospital, Second Military Medical University). A voucher specimen (NO.TD20070927) was deposited in the Department of Pharmacognosy of Second Military Medical University in Shanghai, P.R China.

2. **Previous Studies**

T. diversifolia is used traditionally for the treatment of malaria, fever or wound in Mexico. Modern pharmacological investigations revealed that it has extensive bioactivities including antimalarial [2], antidiabetic [3], anti-inflammatory [4], and anticancer [5]. Phytochemical studies on this species have resulted in the isolation of sesquiterpene lactones, chromenes, and flavones [6-8].

Corresponding author. E-mail: ccssmr@163.com; Phone: 086-21-81871308 Fax: 086-21-81871308
3. Present Study

The dried aerial parts (21 kg) of *Tithonia diversifolia* were percolated with 80% EtOH at room temperature. The EtOH extract was concentrated to an aqueous residue (2.48 kg) and suspended with water. The water layer was extracted with petroleum ether, EtOAc and n-BuOH. The EtOAc fraction (128.0 g) was separated by column chromatography using silica gel as a packing agent and petroleum ether-EtOAc as a solvent mixture, which resulted in six major fractions (1-6). Fraction 2 (6.5 g) was further separated by chromatography using Sephadex LH-20 and silica gel to obtain compound 3 (49.1 mg) [9]. Fraction 3 (28.6 g) was subject to MCI gel column chromatography, eluting with a mixture of MeOH-H_2O, which gave six parts (3.1-3.6). Fraction 3.1(4.6 g) was separated by a silica gel column chromatography to obtain five parts (3.1.1-3.1.5). The subfractions 3.1.5 (2.1 g) was further fractionated using Sephadex LH-20, which gave five parts (3.1.1-3.1.5), and Fraction 3.1.5.5 (0.6 g) was purified by a silica gel column chromatography to obtain compound 5 (28.1 mg) [10]. Fraction 6 (23.7 mg) was subject to MCI gel column chromatography to yield four parts (6.1-6.4). Then, the subfraction 6.1(3.5 g) was subjected to ODS silica gel column chromatography to give compound 2 (38.2 mg).

(+)-2-hydroxymethyl-6,6-dimethylbicyclo[3.1.1]heptane-2a,3a-diol (1): Colorless raphide; [α]_D^20 =+18°(c=0.14, acetone); IR (KBr): 3420, 3348, 3001, 2978, 2953, 2923, 2868, 1644, 1577, 1419, 1384, 1174, 1029, 1002, 971, 886, 863, 758 cm^-1; ^1H-NMR (600 MHz, CDCl_3): δ 8.82(dd, J=5.4 and 6.0 Hz, H-1), 4.31(dd, J=2.4, 9.0 Hz, H-3), 2.60(ddt, J=2.4, 9.0, 13.8 Hz, H-4a), 1.68(dt, J=3.0, 13.8 Hz, H-5b), 1.95(ddt, J=2.4, 3.0, 5.4 Hz, H-5), 2.24(ddt, J=2.4, 6.0, 13.2 Hz, H-7a), 1.24(d, J=13.2 Hz, H-7b), 1.25(s, H-8), 1.04(s, H-9), 4.16(d, F=10.8 Hz, H-10a), 3.26(d, J=10.8 Hz, H-10b). ^13C-NMR (150 MHz, CDCl_3): δ 1174, 1029, 1002, 971, 886, 863, 758 cm^-1; ^1H-NMR (600 MHz, CDCl_3): δ 44.1°(c=0.24, MeOH); ^1H-NMR (600 MHz, pyridine-d_5): δ 8.81(d, J=12.0 Hz, H-2a), 2.43(dd, J=7.8, 12.0 Hz, H-2b), 4.88(dd, J=7.2 Hz, H-3), 2.36(d, J=6.6 Hz, H-5), 2.48(d, J=15.2 Hz, H-7a), 2.48(dd, J=6.6, 15.2 Hz, H-7b), 0.74(s, H-8), 1.35(s, H-9), 5.25(s, H-10a), 5.04(s, H-10b), 5.12(d, J=7.8 Hz, H-1'), 4.05(dd, J=7.8, 8.4 Hz, H-2'), 4.21(dd, J=8.4, 9.6 Hz, H-3'), 4.18(d, J=9.6 Hz, H-4'), 3.89(d, J=6.6 Hz, H-5'), 4.54(d, J=11.4 Hz, H-6'a), 4.34(dd, J=6.0, 11.4 Hz, H-6'b). ^13C-NMR (150 MHz, pyridine-d_5): δ 73.9(C-1), 35.3(C-2), 72.9(C-3), 146.7(C-4), 45.1(C-5), 47.6(C-6), 40.5(C-7), 20.0(C-8), 21.9(C-9), 114.8(C-10), 99.1(C-1'), 74.9(C-2'), 78.6(C-3'), 71.7(C-4'), 78.1(C-5'), 62.7(C-6'). HR-ESI-MS: m/z 375.1669 [M+COOH]^- (calcld for C_{10}H_{18}NaO_{5}, 353.1575 [M+Na]^+).

Bioactivity Test- Agar diffusion test: The differentiated 3T3-L1 adipocytes, plated into 96-well plates were pre-incubated with DMEM, containing 0.2% BSA, and then incubated with various concentrations of the compounds 1-5 (10µg/mL) for 12 hours. The amounts of glucose uptake were calculated by the glucose concentrations of blank wells, subtracting the remaining glucose in the cell-plated wells. Meanwhile, MTT assay was performed to monitor the cell proliferation and adjust the glucose uptake values.

![Figure 1. ^1H-^1H COSY correlations and the key HMBC correlations of compound 1-2](image-url)
Compound 1 was obtained as a needle crystal. The HR-ESI-MS (m/z 219.1119 [M+Na]+) and NMR data (Table 1) explained the molecular formula of compound 1 as C_{10}H_{12}O_{3}, indicating two degrees of unsaturation. The structure of the compound was established through detailed analyses of its 1H and 13C NMR spectra, including 2D NMR. The 13C NMR spectrum of 1 exhibited 10 signals, together with the information from a DEPT spectrum, corresponding to two methyl, three methylenes, three methines, and two quaternary carbons. One oxygenated methane (δC 74.4), one oxygenated methylene (δC 68.3) and one oxygenated quaternary carbon (δC 80.2) were among the signals. The 1H-NMR spectrum of compound 1 displayed two methyls at δH 1.04 (s, CH$_3$-9) and δH 1.25 (s, CH$_3$-8), assigned to δC 23.7 (C-9) and δC 27.1 (C-8), respectively, according to the HSQC correlations; an oxygenated methylene group at δH 4.16 (d, J=10.8 Hz, H-10a) and δH 3.26 (d, J=10.8 Hz, H-10b), showing correlation with δC 68.3 (C-10) in the HSQC and one oxygenated methane at δH 4.31 (dd, J=2.4, 9.0 Hz, H-3), assigned to δC 74.4 (C-3), which were further confirmed by the HSQC correlations. The 1H- and 13C-NMR spectroscopic data (Table 1) as well as the observed HSQC and HMBC correlations (Fig 1) suggested that compound 1 is a pinane monoterpene. The methine signal at δC 49.7 (C-1) was assigned at δC 26.9 (C-7) due to the 1H-1H COSY correlation of δH 1.82 (H-1) to δH 2.24 (H-7). Similarly, δC 26.9 (C-7) attached to δC 40.6 (C-5); δC 40.6 (C-5) attached to δC 37.2 (C-4) and δC 37.2 (C-4) attached to δC 74.4 (C-3) were further confirmed by the 1H-1H COSY correlations (H-7/H-5, H-5/H-4 and H-4/H-3). The oxygenated quaternary carbon at δC 80.2 was assigned to C-2, which showed correlations with H-1 (δH 1.82), H-3 (δH 4.31) and H-7 (δH 2.24) by the HMBC measurements. The remaining quaternary carbon at δC 38.7 was assigned to C-6, which showed correlations with H-1 (δH 1.82) and H-4 (δH 1.68) in the HMBC. The oxygenated methylene (δC 68.3) was attached to C-2 (δC 80.2), confirming by the HMBC correlations from H-10b (δH 3.26) to C-1 (δC 49.7), C-2 (δC 80.2) and C-3 (δC 68.3). The two methyl C-8 (δC 27.1) and C-9 (δC 23.7) were located at the C-6, which was identified by the HMBC correlations from H-8 (δH 1.25) and H-9 (δH 1.04) to C-1 (δC 49.7), C-6 (δC 38.7) and C-5 (δC 40.6). The α-orientation of the hydroxyl groups at C-2 and C-3 were established by the ROESY correlations of the H-8/H-10a and H-3/H-8. Furthermore, the ROESY correlations of H-1/H-5, H-1/H-10 indicated that the H-1 and H-5 had α-orientations, the configuration of compound 1 could be established as shown in Fig 1. Thus, based on the above evidences, compound 1 was assigned as (+)-2-hydroxymethyl-6,6-dimethylbicyclo[3.1.1]heptane-2a,3a-diol. Compound 2 was obtained as a colorless oil. The positive-ion HR-ESI-MS showed a quasimolecular ion at m/z 353.1572 [M+Na]+, and negative-ion HR-ESI-MS at m/z 375.1669 [M+COOH]− corresponding to a molecular formula of C_{16}H_{20}O_{4}, requiring four degrees of unsaturation. The 1H-NMR spectrum of compound 2 displayed two methyl groups at δH 1.35 (s) and δH 0.74 (s), respectively, two olefinic protons as broad singlets at δH 5.04 (br, s) and 5.25 (br, s) and an oxygenated methine at δH 4.88 (J=7.2 Hz). The 13C-NMR spectrum exhibited five oxygenated methine carbons at δC 99.1, 74.9, 78.4, 71.7 and 78.1, and one methylene carbon at δC 62.7, indicating the presence of a glucose moiety, which was identified by GC analysis as D-glucose. Other carbon signals were identified by a DEPT experiment as two methyl, three methylene, three methane and two quaternary carbons, including one oxygenated methine group at δC 72.9 and one oxygenated carbonyl carbon at δC 73.9. The above assignments were characteristic for a glucopyranosyl moiety attached to β-pinene aglycone. The oxygenated carbonyl methine signal at δC 72.9 was assigned to C-3 due to the HMBC correlations with H-10 (δH 5.25 and 5.04), H-5 (δH 2.36) and H-2 (δH 2.43). The glucose moiety was located at the C-3, which was confirmed by the HMBC correlations of H-1 (δH 5.12) to C-3. The β-anomeric configuration for the glucose was determined by a large coupling constant of H-1 (δH 5.12, d, J=7.8 Hz). The oxygenated carbonyl carbon signal at δC 73.9 was assigned to C-1 due to

![Figure 2](image-url)

Figure 2. Key ROESY correlations of compound 1 and 2
the HMBC correlations of H-2 (δH 2.81 and 2.43), H-3 (δH 4.88), H-5 (δH 2.36), H-7 (δH 2.48), H-9 (δH 1.35) and H-8 (δH 0.74) to the carbonyl carbon. The remaining carbons and protons were confirmed at their respective positions based on analyses of the 1H-NMR, 13C-NMR, HMBC and HSQC dates. Structure of compound 2 was confirmed by a ROESY experiment (Fig 2). The hydroxyl groups at C-1 and C-3 were assigned as α-orientations by the ROESY correlations of H7a/H3 and H10/H3. The α-orientation of the H-5 was confirmed by the ROESY correlations of H7a/H3, H7b/H9 and H8/H2. Then, compound 2 was assigned as (-)-6,6-dimethyl-4-Methylenebicyclo[3.1.1]heptane-1α,3α-diol-3-O-β-D-glucopyranoside. Compounds 1–5 were evaluated for their anti-hyperglycemic activity based on glucose uptake in differentiated 3T3-L1 adipocytes. 10 µg/mL of compounds 1 and 3 significantly increased glucose uptakes of 3T3-L1 adipocytes by 1.2- and 1.6- fold compared with the basal level, respectively. Cell viability was assayed by the MTT method, which indicated that the five compounds were not cytotoxic to fully differentiated 3T3-L1 adipocytes at this concentration.

References

ACG publications

© 2013 Reproduction is free for scientific studies