Cytotoxic Sesquiterpenoids and Diarylheptanoids from the Rhizomes of Curcuma elata Roxb.

Ratchanaporn Chokchaisiri¹,², Prapapan Pimkaew³, Pawinee Piyachaturawat⁴,⁵, Rattana Chalermglin⁵ and Apichart Suksamrarn¹

¹Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
²Department of Chemistry, School of Science, University of Phayao, Maeka, Muang, Phayao 56000, Thailand
³Toxicology Graduate Program
⁴Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
⁵Department of Chemistry, Faculty of Science and Technology, Rajabhat Chandrakasem University, Bangkok 10900, Thailand

(Received April 07, 2013, Revised September 17, 2013; Accepted October 02, 2013)

Abstract: The present study was aimed to investigate the chemical constituents of Curcuma elata Roxb. (Zingiberaceae) rhizomes originating in Thailand. Ten sesquiterpenes, germacrone (1), curzerenone (2), isofuranodienone (3), furanodienone (4), curdione (5), neocurdione (6), zederone (7), curcumenone (8), 13-hydroxygermacrone (9) and zedoarondiol (10), and four diarylheptanoids, 3-hydroxy-5-platyphyl lone (11), (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12), centrolobol (13) and (3S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (14) were isolated for the first time from the rhizomes of this plant. The structures of the isolated compounds were identified by comparison of the spectroscopic and physical data with those of the reported values and the stereochmistry at the asymmetric carbon was determined by the modified Mosher’s method and, in some cases, was confirmed by comparison of optical rotation data with literature. Compounds 12 and 13 exhibited strong cytotoxic activity against KB cell line, whereas compounds 4, 9 and 12-14 showed strong cytotoxicity against NCI-H187 cell line.

Keywords: Curcuma elata; Zingiberaceae; sesquiterpenoids; diarylheptanoids; cytotoxicity.

© 2014 ACG Publications. All rights reserved.

1. Plant Source

Curcuma is a well known genus of Zingiberaceae family. They are perennials and widely distributed in tropics and subtropics including Thailand. Curcuma elata Roxb. is commonly known as “Wan-chak-motluk-tua-phu” in Thai [1]. The rhizomes of this plant species were collected from Sawangdaendin district, Sakon Nakhon province, Thailand in June 2007. The plant was identified by

* Corresponding author: E-Mail: s_apichart@ru.ac.th; asuksamrarn@yahoo.com (A. Suksamrarn)
Puangpaka Soontornchainaksaeng and Thaya Jenjittikul, Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand [2]. The voucher specimen (SCMU, No. 305) is deposited at the Department of Plant Science, the Faculty of Science, Mahidol University.

2. Previous Studies

Approximately 20 Curcuma species have been studied phytochemically and three major classes are identified, diarylalkanoids, arylpropene derivatives of cinnamic acid type and terpenoids. About 140 different sesquiterpenoids have been isolated from the genus Curcuma, and they can be classified into ten distinctly different structural types. However, most of these compounds fall into one of the three major categories, bisabolane, germacrane or guaiane types [3]. The investigations on Curcuma which led to the isolation of monoterpenoids [4], sesquiterpenoids [5-8], diterpenoids [9,10], and diarylheptanoids [11-13] have been reported. To our knowledge, there has been no report on phytochemical study and biological activity of C. elata. We wish to report on the isolation and structural identification of the sesquiterpenoids 1-10 and the diarylheptanoids 11-14.

3. Present Study

The air-dried rhizomes of C. elata (8.5 kg) were milled and macerated successively with n-hexane and EtOH. The hexane and EtOH solutions were filtered and concentrated to dryness under reduced pressure at temperature 40-45 °C to give the hexane extract (brownish syrup, 129.7 g) and the EtOH extract (dark brownish sticky solid, 281.5 g). The extraction sequence and detailed isolation of compounds 1-14 are shown in supplementary material. The structures of the isolated compounds were identified by comparison of the spectroscopic and physical data with the literature values.

The structures shown in Figures 1 and 2 are identified as germacrone (1) [14], curzerenone (2) [15], isofuranodienone (3) [15], furanodienone (4) [15], curdione (5) [16], neocurdione (6) [16], zederone (7) [17], curcumene (8) [18], 13-hydroxygermacrone (9) [19], zedoarondiol (10) [20], 3-hydroxy-5-platyphyllone (11) [21], (3S)-1,7-bis(4-hydroxyphenyl)-6E-6-hepten-3-ol (12) [22], centrolobol (13) [23], (3S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-6E-6-hepten-3-ol (14) [24].

![Figure 1. Structures of sesquiterpenoids 1-10 isolated from the rhizomes of C. elata.](image)

The diarylheptanoids 12 and 13 exhibited the most potent cytotoxic activity against both the KB and NCI-H187 cell lines whereas compound 14 was selectively active against the NCI-H187 cell line. The absence of the keto group at C-5 of the diarylheptanoids seems to increase the cytotoxicity. It should be noted that compounds 12 and 14 were highly active against NCI-H187 cell line; they were only 1.6-fold less active than ellipticine, the reference anticancer drug. The isolated sesquiterpenoids 4 and 9 showed moderately high activity against the NCI-H187 cell line. However, the sesquiterpenoids 1-3,
5-8 and 10, and the diarylheptanoid 11 were weakly active or inactive against the three cancer cell lines.

![Figure 2](image_url)

Figure 2. Structures of diarylheptanoids 11-14 isolated from rhizomes of *C. elata*. The absolute configurations of compounds 11 and 12 were determined by the modified Mosher’s method through the MTPA esters (11x and 11y, and 12x and 12y, respectively).

<table>
<thead>
<tr>
<th>Compound</th>
<th>KB<sup>a</sup></th>
<th>MCF-7<sup>b</sup></th>
<th>NCI-H187<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>203.38</td>
<td>202.01</td>
<td>NA<sup>d</sup></td>
</tr>
<tr>
<td>2</td>
<td>NA<sup>d</sup></td>
<td>114.37</td>
<td>108.64</td>
</tr>
<tr>
<td>3</td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
</tr>
<tr>
<td>4</td>
<td>101.60</td>
<td>179.05</td>
<td>19.76</td>
</tr>
<tr>
<td>5</td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
</tr>
<tr>
<td>6</td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
</tr>
<tr>
<td>7</td>
<td>201.15</td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
</tr>
<tr>
<td>8</td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
<td>64.96</td>
</tr>
<tr>
<td>9</td>
<td>82.40</td>
<td>NA<sup>d</sup></td>
<td>11.10</td>
</tr>
<tr>
<td>10</td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
</tr>
<tr>
<td>11</td>
<td>50.42</td>
<td>NA<sup>d</sup></td>
<td>59.24</td>
</tr>
<tr>
<td>12</td>
<td>10.09</td>
<td>143.37</td>
<td>4.45</td>
</tr>
<tr>
<td>13</td>
<td>4.76</td>
<td>158.54</td>
<td>9.55</td>
</tr>
<tr>
<td>14</td>
<td>NA<sup>d</sup></td>
<td>NA<sup>d</sup></td>
<td>4.54</td>
</tr>
<tr>
<td>Ellipticine</td>
<td>1.81</td>
<td>NT<sup>e</sup></td>
<td>2.77</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>0.42</td>
<td>0.98</td>
<td>0.06</td>
</tr>
</tbody>
</table>

^aHuman oral epidermoid carcinoma; ^bHuman breast cancer cells; ^cHuman small cell lung cancer cells; ^dNA, inactive at > 50 µg/ml.; ^eNT, not tested.

Acknowledgments

This work was supported by the National Research Council of Thailand and The Thailand Research Fund (TRF). RC acknowledges a scholarship from the Royal Golden Jubilee Ph.D. Program.
of TRF. Partial support from the Center Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education is gratefully acknowledged.

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

References

Diarylheptanoids from the rhizomes of *Curcuma elata* roxb.

