Cytotoxic Sesquiterpenoids and Diarylheptanoids from the Rhizomes of Curcuma elata Roxb.

Ratchanaporn Chokchaisiri1,2, Prapapan Pimkaew3, Pawinee Piyachaturawat3,4, Rattana Chalermglin5 and Apichart Suksamrarn1*

1Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
2Department of Chemistry, School of Science, University of Phayao, Maeka, Muang, Phayao 56000, Thailand
3Toxicology Graduate Program, and 4Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
5Department of Chemistry, Faculty of Science and Technology, Rajabhat Chandrakasem University, Bangkok 10900, Thailand

Table of Contents

- Extraction and Isolation of the Air-dried Rhizomes of Curcuma elata
- Preparation of Mosher Esters of Compounds 11 and 12
- S1: 1H NMR spectrum of germacrone (1) in CDCl\textsubscript{3}
- S2: 13C NMR spectrum of germacrone (1) in CDCl\textsubscript{3}
- S3: 1H NMR spectrum of curzerenone (2) in CDCl\textsubscript{3}
- S4: 13C NMR spectrum of curzerenone (2) in CDCl\textsubscript{3}
- S5: 1H NMR spectrum of isofuranodienone (3) in CDCl\textsubscript{3}
- S6: 13C NMR spectrum of isofuranodienone (3) in CDCl\textsubscript{3}
- S7: 1H NMR spectrum of furanodienone (4) in CDCl\textsubscript{3}
- S8: 13C NMR spectrum of furanodienone (4) in CDCl\textsubscript{3}
- S9: 1H NMR spectrum of curdione (5) in CDCl\textsubscript{3}
- S10: 13C NMR spectrum of curdione (5) in CDCl\textsubscript{3}

* Corresponding author: E- Mail: s_apichart@ru.ac.th; asuksamrarn@yahoo.com (A. Suksamrarn)
Extraction and Isolation of the Air-dried Rhizomes of *Curcuma elata*

The air-dried rhizomes of *C. elata* (8.5 kg) were milled and macerated successively with *n*-hexane and EtOH. The hexane and EtOH solutions were filtered and concentrated to dryness under reduced pressure at temperature 40-45 °C to give the hexane extract (brownish syrup, 129.7 g) and the EtOH extract (dark brownish sticky solid, 281.5 g).
Hexane Extract

The hexane extract (129.0 g) was fractionated by column chromatography (CC) (Merck silica gel 60, 0.063-0.200 mm, 250 g) eluting with n-hexane, n-hexane-EtOAc, and EtOAc with increasing amount of the more polar solvent. The eluates were examined by TLC and 8 groups of eluting fractions were obtained.

Group 3 (Fractions 5-17): These combined fractions were chromatographed over silica gel and eluted under isocratic condition (1% EtOAc in n-hexane) to afford germacrone (1) as colorless prisms (575.9 mg), m.p. 49-50 °C (from MeOH) and curzerenone (2) as a colorless oil (475.6 mg).

Group 4 (Fractions 18-40): These combined fractions were chromatographed over silica gel and eluted under isocratic condition (2% EtOAc in n-hexane) to afford 3 subfractions. Subfraction 1 (fractions 1-31) was separated on a Sephadex LH-20 eluting with MeOH and further purified by silica column chromatography eluting with 0.6% EtOAc in n-hexane to yield isofuranodienone (3) as a colorless oil (3.2 mg). Subfraction 3 (fractions 40-51) was subjected to repeated column chromatography eluting under isocratic condition (1% EtOAc in n-hexane) to give furanodienone (4) as a colorless oil (44.3 mg).

Group 5 (Fractions 41-57): These combined fractions were chromatographed over silica gel using 2% EtOAc in n-hexane as eluent, followed by column chromatography eluting under isocratic condition (1% EtOAc in n-hexane) to give curdione (5) as colorless prisms (129.9 mg), m.p. 55-56 °C (from EtOAc-n-hexane) and neocurdione (6) as a colorless prisms (385.8 mg), m.p. 41-42 °C (from EtOAc- n-hexane).

Group 7 (Fraction 60): This fraction was repeatedly recrystallized with EtOAc in n-hexane to afford zederone (7) as colorless needles (11.85 g), m.p. 153-154 °C (from EtOAc-n-hexane).

Group 8 (Fractions 61-62): These combined fractions were chromatographed over silica gel and eluted under isocratic condition (5% EtOAc in n-hexane) to afford 6 subfractions. Subfraction 3 (fractions 5-6) was rechromatographed over silica gel eluting with CHCl3 to give 3-hydroxy-5-platyphyllone (11) as colorless viscous oil (2.7 mg), (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) as amorphous powder (20.2 mg), m.p. 112-113° (EtOAc-n-hexane) and centrolobol (13) as amorphous solid (7.5 mg). Subfraction 3 (fractions 11-13) was subjected to two repeated column chromatography eluting under isocratic condition (15% EtOAc in n-hexane) to yield 13-hydroxygermacrone (9) as colorless oil (45.8 mg).

EtOH Extract

The EtOH extract (270.0 g) was fractionated by column chromatography (Merck silica gel 60, 0.063-0.200 mm, 520 g), using a gradient solvent system of n-hexane, n-hexane-EtOAc, EtOAc, EtOAc-MeOH and MeOH with increasing amounts of the more polar solvent. The eluates were examined by TLC and 3 combined fractions were obtained.

Group 2 (Fractions 40-58): These combined fractions were chromatographed over silica gel and eluted under isocratic condition (0.5% MeOH in CH2Cl2) to afford 4 subfractions. Subfraction 2 (fractions 13-17) was separated on Sephadex LH-20 eluting with MeOH and further purified by column chromatography over silica gel RP-18 with 30% MeOH in H2O as eluting solvent to give 3-hydroxy-5-platyphyllone (11) as colorless viscous oil (2.7 mg), (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) as amorphous powder (20.2 mg), m.p. 112-113° (EtOAc-n-hexane) and centrolobol (13) as amorphous solid (7.5 mg). Subfraction 3 (fractions 18-23) was separated on Sephadex LH-20 eluting with MeOH, followed by column chromatography over silica gel RP-18 with 30% MeOH in H2O to yield (3S)-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (14) as amorphous solid (2.1 mg).

Group 3 (Fractions 59-60): These combined fractions were chromatographed on a Sephadex LH-20 and eluted with MeOH and further purified by chromatography over silica gel
RP-18 with 30% MeOH in H₂O to give zedoarondiol (10) as colorless needles (7.5 mg), m.p. 123 °C (from EtOAc-n-hexane).

Preparation of the MTPA Ester of Compounds 11 and 12.

To a solution of the compound 11 (2.1 mg) in dry pyridine (100 µL) was added (R)-(--)-MTPA chloride (15 µL) at 10 °C and the mixture was stirred for 5 min. Stirring continued at ambient temperature and the completion of reaction was monitored by TLC. Two milliliters of n-hexane was added to the reaction mixture and the hexane-soluble part was subjected to flash column chromatography using n-hexane and 15% EtOAc/n-hexane as eluting solvent to give the (S)-MTPA ester 11x (3.2 mg). The procedure was repeated, but using (S)-(+) MTPA chloride in place of (R)-(--)-MTPA chloride, to yield the (R)-MTPA ester 11y (3.5 mg). The 1H NMR spectra of 11x and 11y were recorded in CDCl₃; the chemical shift differences of the proton resonances between the (S)-MTPA ester 11x and the (R)-MTPA ester 11y were calculated and the results are summarized in S29. Following the above procedure, the absolute configurations of esters 12x and 12y were determined, and the results are summarized in S30.
S1. 1H-NMR spectrum of germacrone (1) in CDCl$_3$

Germacrone (1): 1H-NMR (CDCl$_3$, 400 MHz), δ: 4.95 (1H, br d, $J = 11.6$ Hz, H-1), 2.05 (1H, m, H-2α), 2.35 (1H, m, H-2β), 2.06 (1H, m, H-3α), 2.13 (1H, m, H-3β), 4.68 (1H, br d, $J = 9.0$ Hz, H-5), 2.82 (1H, br d, $J = 12.5$ Hz, H-6α), 2.91 (1H, br d, $J = 12.5$ Hz, H-6β), 2.92 (1H, d, $J = 10.0$ Hz, H-9α), 3.38 (1H, d, $J = 10.0$ Hz, H-9β), 1.77 (3H, s, H-12), 1.69 (3H, s, H-13), 1.41 (3H, s, H-14), 1.60 (3H, s, H-15).

S2. 13C-NMR spectrum of germacrone (1) in CDCl$_3$

Germacrone (1): 13C-NMR (CDCl$_3$, 100 MHz), δ: 134.8 (C-1), 24.0 (C-2), 38.0 (C-3), 134.8 (C-4), 125.3 (C-5), 29.1 (C-6), 129.3 (C-7), 207.6 (C-8), 55.8 (C-9), 126.6 (C-10), 137.2 (C-11), 19.8 (C-12), 22.2 (C-13), 15.5 (C-14), 16.6 (C-15).
S3. 1H-NMR spectrum of curzerenone (2) in CDCl$_3$

Curzerenone (2): 1H-NMR (CDCl$_3$, 400 MHz), δ: 5.78 (1H, dd, $J = 17.4$, 13.0 Hz, H-1), 4.98 (2H, dd, $J = 17.4$, 4.3 Hz, H-2), 4.73 (1H, br s, H-3α), 4.98 (1H, br s, H-3β), 2.99 (1H, s, H-5), 2.76 (1H, d, $J = 17.5$ Hz, H-9α), 2.88 (1H, d, $J = 17.5$ Hz, H-9β), 7.06 (3H, br s, H-12), 2.15 (3H, s, H-13), 1.81 (3H, s, H-14), 1.16 (3H, s, H-15).

S4. 13C-NMR spectrum of curzerenone (2) in CDCl$_3$

Curzerenone (2): 13C-NMR (CDCl$_3$, 100 MHz), δ: 145.5 (C-1), 112.9 (C-2), 115.5 (C-3), 141.0 (C-4), 64.5 (C-5), 194.7 (C-6), 119.2 (C-7), 165.4 (C-8), 33.6 (C-9), 42.8 (C-10), 120.1 (C-11), 139.5 (C-12), 8.9 (C-13), 24.7 (C-14), 24.7 (C-15).
S5. 1H-NMR spectrum of isofuranodienone (3) in CDCl$_3$

Isofuranodienone (3): 1H-NMR (CDCl$_3$, 400 MHz), δ: 5.25 (1H, br t, $J = 8.6$ Hz, H-1), 1.78 (1H, m, H-2α), 2.09 (1H, m, H-2β), 2.20 (1H, m, H-3α), 2.25 (1H, m, H-3β), 5.84 (1H, br s, H-5), 3.03 (1H, d, $J = 14.5$ Hz, H-9α), 3.57 (1H, d, $J = 14.5$ Hz, H-9β), 7.05 (3H, br s, H-12), 2.16 (3H, br s, H-13), 1.73 (3H, s, H-14), 1.63 (3H, s, H-15).

S6. 13C-NMR spectrum of isofuranodienone (3) in CDCl$_3$

Isofuranodienone (3): 13C-NMR (CDCl$_3$, 100 MHz), δ: 123.9 (C-1), 26.1 (C-2), 36.3 (C-3), 141.1 (C-4), 129.0 (C-5), 193.8 (C-6), 123.9 (C-7), 161.5 (C-8), 32.8 (C-9), 134.0 (C-10), 122.1 (C-11), 138.4 (C-12), 9.5 (C-13), 22.6 (C-14), 19.1 (C-15).
Furanodienone (4): 1H-NMR (CDCl$_3$, 400 MHz), δ: 5.15 (1H, dd, $J = 11.4$, 4.1 Hz, H-1), 2.16 (1H, td, $J = 12.4$, 3.5 Hz, H-2α), 2.30 (1H, td, $J = 12.4$, 4.1 Hz, H-2β), 1.85 (1H, td, $J = 11.4$, 4.1 Hz, H-3α), 2.44 (1H, ddd, $J = 11.4$, 6.9, 3.4 Hz, H-3β), 5.78 (1H, br s, H-5), 3.66 (1H, br d, $J = 14.5$ Hz, H-9α), 3.70 (1H, br d, $J = 14.5$ Hz, H-9β), 7.05 (3H, br s, H-12), 2.11 (3H, s, H-13), 1.97 (3H, s, H-14), 1.28 (3H, s, H-15).

Furanodienone (4): 13C-NMR (CDCl$_3$, 100 MHz), δ: 130.5 (C-1), 26.4 (C-2), 40.6 (C-3), 145.8 (C-4), 132.4 (C-5), 190.0 (C-6), 123.9 (C-7), 156.5 (C-8), 41.7 (C-9), 135.4 (C-10), 122.0 (C-11), 138.0 (C-12), 9.5 (C-13), 18.9 (C-14), 15.7 (C-15).
S9. 1H-NMR spectrum of curdione (5) in CDCl$_3$

\textit{Curdione (5):} 1H-NMR (CDCl$_3$, 400 MHz), δ: 5.14 (1H, br s, H-1), 2.08-2.13 (2H, m, H-2), 1.56 (1H, m, H-3α), 2.08-2.13 (1H, m, H-3β), 2.30 (1H, br s, H-4), 2.37 (1H, dd, J = 16.4, 1.5 Hz, H-6α), 2.65 (1H, m, H-6β), 2.88 (1H, ddd, J = 16.4, 8.5, 7.8 Hz, H-7), 2.91 (1H, d, J = 10.7 Hz, H-9α), 3.04 (1H, d, J = 10.7 Hz, H-9β), 1.85 (1H, m, H-11), 0.85 (3H, d, J = 6.5 Hz, H-12), 0.92 (3H, d, J = 6.5 Hz, H-13), 0.95 (3H, d, J = 6.9 Hz, H-14), 1.62 (3H, s, H-15).

S10. 13C-NMR spectrum of curdione (5) in CDCl$_3$

\textit{Curdione (5):} 13C-NMR (CDCl$_3$, 100 MHz), δ: 131.5 (C-1), 26.3 (C-2), 34.0 (C-3), 46.7 (C-4), 214.6 (C-5), 44.2 (C-6), 53.5 (C-7), 211.1 (C-8), 55.8 (C-9), 129.2 (C-10), 29.9 (C-11), 21.1 (C-12), 19.8 (C-13), 18.5 (C-14), 16.5 (C-15).
S11. 1H-NMR spectrum of neocurdione (6) in CDCl$_3$

Neocurdione (6): 1H-NMR (CDCl$_3$, 400 MHz), δ: 5.11 (1H, br s, H-1), 2.02 (1H, m, H-2α), 2.08 (1H, m, H-2β), 1.70 (1H, m, H-3α), 1.91 (1H, m, H-3β), 2.45 (1H, br s, H-4), 2.36 (1H, dd, $J = 14.8$, 2.4 Hz, H-6α), 2.66 (1H, dd, $J = 14.8$, 10.3 Hz, H-6β), 2.83 (1H, ddd, $J = 19.5$, 10.9, 8.5 Hz, H-7), 2.82 (1H, br d, $J = 11.4$ Hz, H-9α), 3.00 (1H, br d, $J = 11.4$ Hz, H-9β), 1.81 (1H, m, H-11), 0.87 (3H, d, $J = 6.6$ Hz, H-12), 0.92 (3H, d, $J = 6.6$ Hz, H-13), 1.00 (3H, d, $J = 7.1$ Hz, H-14), 1.61 (3H, s, H-15).

S12. 13C-NMR spectrum of neocurdione (6) in CDCl$_3$

Neocurdione (6): 13C-NMR (CDCl$_3$, 100 MHz), δ: 131.1 (C-1), 25.4 (C-2), 32.7 (C-3), 45.7 (C-4), 212.5 (C-5), 42.0 (C-6), 52.5 (C-7), 210.2 (C-8), 55.2 (C-9), 129.1 (C-10), 30.9 (C-11), 21.0 (C-12), 20.3 (C-13), 18.1 (C-14), 18.1 (C-15).
S13. 1H-NMR spectrum of zederone (7) in CDCl$_3$

Zederone (7): 1H-NMR (CDCl$_3$, 400 MHz), δ: 5.46 (1H, dd, $J = 11.8$, 3.6 Hz, H-1), 2.17 (1H, br d, $J = 13.2$ Hz, H-2α), 2.48 (1H, $J = $dddd, 13.6, 13.2, 11.9, 3.2 Hz, H-2β), 1.25 (1H, ddd, $J = 12.8$, 10.3, 3.8 Hz, H-3α), 2.26 (1H, ddd, $J = 12.8$, 6.8, 3.2 Hz, H-3β), 3.78 (1H, br s, H-5), 3.65 (1H, d, $J = 16.4$ Hz, H-9α), 3.72 (1H, d, $J = 16.4$ Hz, H-9β), 7.05 (1H, s, H-12), 2.08 (3H, s, H-13), 1.31 (3H, s, H-14), 1.57 (3H, s, H-15).

S14. 13C-NMR spectrum of zederone (7) in CDCl$_3$

Zederone (7): 13C-NMR (CDCl$_3$, 100 MHz), δ: 131.2 (C-1), 24.6 (C-2), 37.9 (C-3), 64.0 (C-4), 66.5 (C-5), 192.1 (C-6), 123.2 (C-7), 157.0 (C-8), 41.8 (C-9), 131.0 (C-10), 122.2 (C-11), 138.0 (C-12), 10.2 (C-13), 15.1 (C-14), 15.7 (C-15).
1H-NMR spectrum of curcumenone (8) in CDCl₃

Curcumenone (8): 1H-NMR (CDCl₃, 400 MHz), δ: 0.41 (1H, dt, J = 7.1, 4.3 Hz, H-1), 1.59 (2H, q, J = 7.1 Hz, H-2), 2.44 (2H, t, J = 7.1 Hz, H-3), 0.63 (1H, q, J = 4.3 Hz, H-5), 2.78 (2H, br s, H-6), 2.48 (1H, d, 14.6 Hz, H-9α), 2.53 (1H, d, 14.6 Hz, H-9β), 2.06 (1H, s, H-12), 1.76 (3H, s, H-13), 2.10 (3H, s, H-14), 1.09 (3H, s, H-15).

C-NMR spectrum of curcumenone (8) in CDCl₃

Curcumenone (8): 13C-NMR (CDCl₃, 100 MHz), δ: 24.1 (C-1), 23.4 (C-2), 43.9 (C-3), 208.7 (C-4), 24.1 (C-5), 28.0 (C-6), 128.0 (C-7), 201.6 (C-8), 48.9 (C-9), 20.1 (C-10), 147.3 (C-11), 23.4 (C-12), 23.4 (C-13), 30.0 (C-14), 19.0 (C-15).
S17. 1H-NMR spectrum of 13-hydroxygermacrone (9) in CDCl$_3$

13-Hydroxygermacrone (9): 1H-NMR (CDCl$_3$, 400 MHz), δ: 4.95 (1H, br d, $J = 11.6$ Hz, H-1), 2.04 (1H, m, H-2α), 2.14 (1H, m, H-2β), 2.05 (1H, m, H-3α), 2.14 (1H, m, H-3β), 4.61 (1H, br d, $J = 12.0$ Hz, H-5), 2.94 (2H, m, H-6), 2.93 (1H, br d, $J = 11.8$ Hz, H-9α), 3.40 (1H, br d, $J = 11.8$ Hz, H-9β), 1.78 (3H, s, H-12), 4.15 (1H, d, $J = 12.2$ Hz, H-13), 4.27 (1H, d, $J = 12.2$ Hz, H-13), 1.40 (3H, s, H-14), 1.60 (3H, s, H-15).

S18. 13C-NMR spectrum of 13-hydroxygermacrone (9) in CDCl$_3$

13-Hydroxygermacrone (9): 13C-NMR (CDCl$_3$, 100 MHz), δ: 133.0 (C-1), 24.0 (C-2), 38.0 (C-3), 135.7 (C-4), 124.9 (C-5), 28.5 (C-6), 131.3 (C-7), 207.1 (C-8), 55.5 (C-9), 126.3 (C-10), 139.9 (C-11), 17.7 (C-12), 62.7 (C-13), 15.5 (C-14), 16.5 (C-15).
S19. 1H-NMR spectrum of zedoarondiol (10) in CDCl$_3$

Zedoarondiol (10): 1H-NMR (CDCl$_3$, 400 MHz), δ: 1.93 (1H, m, H-1), 1.58-1.75 (2H, m, H-2), 1.58-1.75 (2H, m, H-3), 1.34 (1H, t, J=11.4 Hz, H-5), 1.95 (1H, br d, J = 13.2 Hz, H-6α), 2.77 (1H, d, J = 13.2 Hz, H-6β), 2.54 (1H, d, J = 12.6 Hz, H-9α), 2.91 (1H, d, J = 12.6 Hz, H-9β), 1.89 (3H, s, H-12), 1.79 (3H, s, H-13), 1.16 (3H, s, H-14), 1.14 (3H, s, H-15).

S20. 13C-NMR spectrum of zedoarondiol (10) in CDCl$_3$

Zedoarondiol (10): 13C-NMR (CDCl$_3$, 100 MHz), δ: 55.8 (C-1), 21.8 (C-2), 39.6 (C-3), 79.9 (C-4), 51.8 (C-5), 28.4 (C-6), 134.6 (C-7), 203.0 (C-8), 59.7 (C-9), 72.6 (C-10), 142.1 (C-11), 22.8 (C-12), 22.1 (C-13), 22.5 (C-14), 20.5 (C-15).
S21. 1H-NMR spectrum of 3-hydroxy-5-platyphyllone (11) in CDCl$_3$

3-Hydroxy-5-platyphyllone (11): 1H-NMR (CDCl$_3$, 400 MHz), δ: 2.52 (1H, m, H-1a), 2.59 (1H, m, H-1b), 1.56 (1H, m, H-2a), 1.67 (1H, m, H-2b), 3.93 (1H, m, H-3), 2.45 (2H, dd, $J = 4.7, 2.5$ Hz, H-4), 2.64 (2H, t, $J = 7.1$ Hz, H-6), 2.74 (2H, t, $J = 7.1$ Hz, H-7), 6.95 (2H, d, $J = 8.1$ Hz, H-2', 6'), 6.68 (2H, d, $J = 8.1$ Hz, H-3', 5'), 6.93 (2H, d, $J = 8.1$ Hz, H-2'', 6''), 6.67 (2H, d, $J = 8.1$ Hz, H-3'', 5'').

S22. 13C-NMR spectrum of 3-hydroxy-5-platyphyllone (11) in CDCl$_3$

3-Hydroxy-5-platyphyllone (11): 13C-NMR (CDCl$_3$, 100 MHz), δ: 30.6 (C-1), 38.1 (C-2), 66.9 (C-3), 49.2 (C-4), 211.7 (C-5), 45.2 (C-6), 28.6 (C-7), 132.9 (C-1'), 129.3 (C-2', 6'), 115.2 (C-3', 5'), 154.3 (C-4'), 131.8 (C-1''), 129.2 (C-2'', 6''), 115.1 (C-3'', 5''), 154.6 (C-4'').
S23. 1H-NMR spectrum of (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) in CDCl$_3$

(3S)-1,7-bis(4-Hydroxyphenyl)-(6E)-6-hepten-3-ol (12): 1H-NMR (CDCl$_3$, 400 MHz), δ: 2.52 (1H, m, H-1a), 2.65 (1H, m, H-1b), 1.69 (2H, m, H-2), 3.61 (1H, m, H-3), 1.57 (2H, m, H-4), 2.21 (2H, m, H-5), 5.96 (1H, dt, $J = 15.6$, 6.9 Hz, H-6), 6.25 (1H, d, $J = 15.6$ Hz, H-7), 6.97 (2H, d, $J = 8.2$ Hz, H-2′, 6′), 6.68 (2H, d, $J = 8.2$ Hz, H-3′, 5′), 7.12 (2H, d, $J = 8.6$ Hz, H-2′′, 6′′), 6.70 (2H, d, $J = 8.6$ Hz, H-3′′, 5′′).

S24. 13C-NMR spectrum of (3S)-1,7-bis(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (12) in CDCl$_3$

(3S)-1,7-bis(4-Hydroxyphenyl)-(6E)-6-hepten-3-ol (12): 13C-NMR (CDCl$_3$, 100 MHz), δ: 30.8 (C-1), 38.8 (C-2), 70.6 (C-3), 36.7 (C-4), 29.0 (C-5), 127.4 (C-6), 129.7 (C-7), 133.2 (C-1′), 129.2 (C-2′, 6′), 115.3 (C-3′, 5′), 154.3 (C-4′), 129.7 (C-1′′), 127.0 (C-2′′, 6′′), 115.2 (C-3′′, 5′′), 155.5 (C-4′′).
S25. 1H-NMR spectrum of centrolobol (13) in CDCl$_3$

Centrolobol (13): 1H-NMR (CDCl$_3$, 400 MHz), δ: 2.53 (1H, m, H-1a), 2.62 (1H, m, H-1b), 1.65 (2H, m, H-2), 3.52 (1H, m, H-3), 1.51 (2H, m, H-4), 1.23 (1H, m, H-5a), 1.39 (1H, m, H-5b), 1.42 (2H, m, H-6), 2.46 (2H, t, $J = 7.5$ Hz, H-7), 6.96 (2H, d, $J = 8.5$ Hz, H-2, 6’), 6.69 (2H, d, $J = 8.5$ Hz, H-3, 5’), 6.94 (2H, d, $J = 8.6$ Hz, H-2”, 6”), 6.68 (2H, d, $J = 8.6$ Hz, H-3”, 5”).

S26. 13C-NMR spectrum of centrolobol (13) in CDCl$_3$

Centrolobol (13): 13C-NMR (CDCl$_3$, 100 MHz), δ: 30.9 (C-1), 39.0 (C-2), 71.0 (C-3), 31.5 (C-4), 24.9 (C-5), 37.0 (C-6), 34.8 (C-7), 133.6 (C-1’), 129.2 (C-2’, 6’), 115.3 (C-3’, 5’), 154.2 (C-4’), 133.8 (C-1”), 129.2 (C-2”, 6”), 115.1 (C-3”, 5”), 154.3 (C-4”).
S27. 1H-NMR spectrum of (3S)-1-(3,4-dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (14) in CDCl$_3$

(3S)-1-(3,4-Dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (14): 1H-NMR (CDCl$_3$, 400 MHz), δ: 2.46 (1H, m, H-1a), 2.54 (1H, m, H-1b), 1.64 (2H, m, H-2), 3.54 (1H, m, H-3), 1.50 (2H, m, H-4), 2.17 (2H, m, H-5), 5.94 (1H, dt, $J = 15.7$, 6.9 Hz, H-6), 6.22 (1H, d, $J = 15.7$ Hz, H-7), 6.46 (1H, br s, H-2$''$), 6.64 (1H, d, $J = 8.0$ Hz, H-5$'$), 6.22 (1H, d, $J = 8.0$ Hz, H-6$'$), 7.09 (2H, d, $J = 8.3$ Hz, H-2$''$, 6$''$), 6.66 (2H, d, $J = 8.3$ Hz, H-3$''$, 5$''$).

S28. 13C-NMR spectrum of (3S)-1-(3,4-dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (14) in CDCl$_3$

(3S)-1-(3,4-Dihydroxyphenyl-7-(4-hydroxyphenyl)-(6E)-6-hepten-3-ol (14): 13C-NMR (CDCl$_3$, 100 MHz), δ: 31.1 (C-1), 38.9 (C-2), 70.3 (C-3), 36.9 (C-4), 29.9 (C-5), 127.3 (C-6), 129.6 (C-7), 134.1 (C-1$'$), 114.2 (C-2$'$), 144.2 (C-3$'$), 142.3 (C-4$'$), 115.3 (C-5$'$), 119.8 (C-6$'$), 129.3 (C-1$''$), 126.9 (C-2$''$, 6$''$), 115.2 (C-3$''$, 5$''$), 155.6 (C-4$''$).
\[\Delta \delta = (\Delta \delta_S - \Delta \delta_R) \] values in ppm obtained from the MTPA esters of 11 in CDCl₃.

11, \(R = H \)
11x, \(R = (s)\text{-MTPA} \)
11y, \(R = (r)\text{-MTPA} \)

\[\Delta \delta = (\Delta \delta_S - \Delta \delta_R) \] values in ppm obtained from the MTPA esters of 12 in CDCl₃.

12, \(R = H \)
12x, \(R = (s)\text{-MTPA} \)
12y, \(R = (r)\text{-MTPA} \)

S29. \(\Delta \delta = (\Delta \delta_S - \Delta \delta_R) \) values in ppm obtained from the MTPA esters of 11 in CDCl₃.

S30. \(\Delta \delta = (\Delta \delta_S - \Delta \delta_R) \) values in ppm obtained from the MTPA esters of 12 in CDCl₃.