

Rec. Nat. Prod. 9:3 (2015) 323-328

records of natural products

A Rare Secoiridoid Dimer Derivative from *Ligustri lucidi fructus* Liangliang Gao^{1,2}, Xiaoqian Liu^{1,2}, Chun Li^{1,2}, Zhimin Wang^{1,2*} and Tao Guo^{1,2}

¹Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China ²National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Beijing 100700, P. R. China

(Received May 21, 2014; Revised September 25, 2014; Accepted October 26, 2014)

Abstract: A secoiridoid glucoside dimer derivative, named as 4', 5'-(2'-hydroxy ligustrosidic acid) dimer (1), together with two known secoiridoids were isolated from the aqueous extract of *Ligustri lucidi fructus*. Structures of these compounds were elucidated by analysis of spectroscopic data including 1D-, 2D-NMR and HR-ESI-MS, and the reported literature data comparison. This is the first report on iridoid dimer derivative isolation from the genus *Ligustrum*. Their antioxidant activities were evaluated by using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Compound **1** exhibited moderate antioxidant activity.

Keywords: *Ligustri lucidi fructus*; Secoiridoid dimer derivative; Antioxidant activity. © 2015 ACG Publications. All rights reserved.

1. Introduction

Ligustri lucidi fructus (LLF) which belongs to the Oleaceae family [1] naturally occurs in warm and humid climates with rich resources, *e.g.* the east, south and southwest of China, south Korea and India [2]. As a traditional Chinese medicine, LLF has been used for two thousands of years in China. It was firstly described in the Chinese Materia Medica, *Shennong-Bencao-Jing* (Anonymous, ca. 200 B.C.). In Chinese Pharmacopoeia (Edition 2010), its main function is to nourish liver and kidneys, improve eyesight and make the hair black [3]. Previous phytochemical investigation indicated the presence of triterpenoids, iridoids [4-5], flavonoids, phenylethanoid glycosides and others, responsible for a variety of pharmacological effects *e.g.* anti-tumor, hepatoprotective, immune regulating, antioxidative and anti-aging effect, anti-inflammation and reducing hypercholesterolemia, *etc*. In order to further study the genus *Ligustrum* and search for novel bioactive metabolites from it, in this

paper, the chemical constituents from LLF were systematically studied. One new antioxidant secoiridoid glucoside dimer derivative, 4', 5'-(2'-hydroxy ligustrosidic acid) dimer (1), together with two known compounds, (8*E*)-nuezhenide (2) and specnuezhenide (3) (Figure 1) were obtained and identified. Details of the isolation and structure elucidation of the chemical constituents 1-3 are described, and their antioxidant activities were also tested by DPPH radical scavenging assay using ascorbic acid as a standard antioxidant.

^{*} Corresponding author: Email: <u>zhmw123@263.net;</u> Phone: +86-10-84014128 Fax: +86-10-84014128

2. Materials and Methods

2.1. General experimental procedures

Melting point (MP) was determined on an X-4 micromelting point apparatus (Cany Precision Instruments Co., Ltd., Shanghai, China). IR spectra were recorded on a Nicolet 5700 FT-IR spectrometer using methanol as solvent (Thermo Nicolet Corporation, Madison, USA). UV spectra were measured on T6 New Century UV-vis spectrophotometer (Pgeneral, Beijing, China). NMR spectra were acquired with Bruker Advance 600 spectrometer (Bruker, Fallanden, Switzerland). HRESIMS data were recorded on an Agilent Technologies 6250 Accurate-Mass O-TOF LC/MS spectrometer (Santa Clara, CA, USA). Preparative HPLC was performed on a LC 3000 instrument (Beijing Chuangxintongheng Science and Technology Co., Ltd., Beijing, China) connected to a UV 3000 detector, using an Intersil-ODS column (250 × 20 mm, 10 µm; GL Sciences Inc. Japan). TLC plate precoated with silica gel GF_{254} (20 × 20 cm) was purchased from Merck (Darmstadt, Germany). ODS (Octadecylsilyl, 50 µm, YMC Co., Ltd., Kyoto, Shimogyo-ku, Japan), silica gel (200-300 mesh, Qingdao Marine Chemical Industry, Qingdao, China) and AB-8 macroporous adsorption resin (The Chemical Plant of Nankai University, Tianjin, China) were used for column chromatography (CC). Spots were visualized under UV light or by spraying with vanillic aldehyde-10% concentrated sulfuric acid ethanol solution (5:95, v/v) followed by heating. Solvents [petroleum ether (60-90°C), CHCl₃, EtOAc, MeOH, CH₂Cl₂ and EtOH] were of analytical grade and purchased from Beijing Chemical Company, Beijing, China.

2.2. Plant material

Plant material as fruits of *Ligustrum lucidum* Ait. were collected from Jiangsu province, China, in January 2013 and identified by Researcher Zhimin Wang of Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences. A voucher specimen (No. 20130120) has been deposited there.

2.3. Extraction and isolation

The dry fruits (LLF; 5 Kg) were decocted three times with hot water (60°C, 50 L, 2 h each time), and the combined solution was concentrated under reduced pressure to yield an extract (400 g). Then the extract was subjected to AB-8 macroporous resin column chromatography eluted with EtOH-H₂O (0:100 and 50:50, v/v) and the fractions eluted with 50% EtOH afforded the total iridoids of LLF (LFI). The LFI portion was subjected to column chromatography on silica gel with a stepped gradient of CHCl₃-MeOH (100:10 to 100:50, v/v) to yield 5 fractions (Fractions 1-5). Fraction 4 was further separated by ODS column chromatography using MeOH-H₂O (10:90 to 100:0, v/v) to afford subfractions 1-4. Subfraction 4 was subjected to silica gel column chromatography gradiently eluted with CHCl₃-MeOH (100:1 to 100:50, v/v) to give 20 fractions (subfractions 4-1 - 4-20). Subfraction 4-4 was purified by preparative HPLC and compound **1** (5.4 mg) was obtained after Sephadex LH-20 column chromatography eluted with MeOH. Subfraction 4-10 was fractionated into two parts by preparative HPLC, and the first part yielded compound **2** (45.5 mg); The second part was subjected to sephadex LH-20 column chromatography eluted with MeOH to give compound **3** (200mg).

2.4. 4', 5'-(2'-hydroxy ligustrosidic acid) dimer (1)

Amorphous powder, mp 172-175°C. UV (MeOH) λ max: 193nm. IR ν max (KBr): 3429, 2952, 1713, 1633 cm⁻¹. HR-ESI-MS *m*/*z*: 1159.2758 [M+Na]⁺ (calcd. for C₅₀H₅₆O₃₀, 1159.2754). ¹H-NMR, ¹³C-NMR data in Table 1.

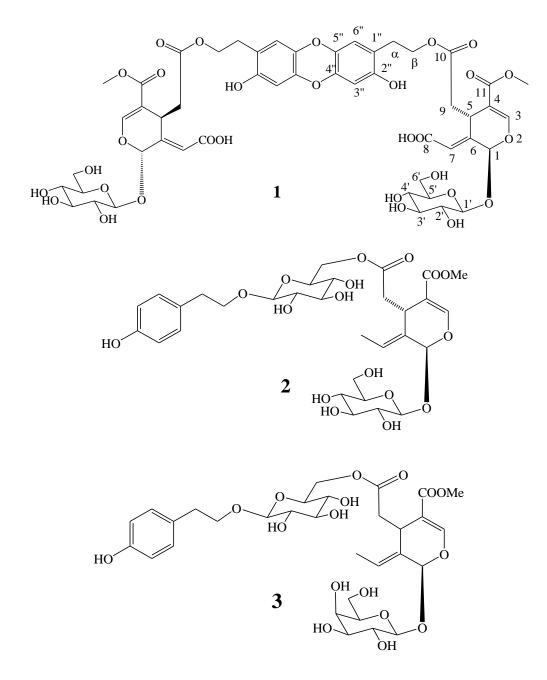


Figure 1. Chemical structures of compound 1-3.

3. Results and Discussion

3.1. Structure elucidation

Compound **1** (Figure 1) was obtained as pale amorphous power. Its molecular formula was determined as $C_{50}H_{56}O_{30}$ with twenty-three degrees of unsaturation based on the observed pseudomolecular ion $[M + Na]^+$ at m/z 1159.2758 (calcd. 1159.2754) by HR-ESI-MS, which was supported by its NMR data. The IR spectrum showed the presence of hydroxyl (3429 cm⁻¹), carbonyl (1713 cm⁻¹), double bond (1633 cm⁻¹) groups. The ¹H and ¹³C-NMR spectrum of **1** together with an HSQC experiment showed the presence of a 1, 2, 4, 5-tetrasubstituted benzene ring [δ_H 6.60 (1H, s), 6.42 (1H, s)], two double bonds [δ_H 7.52 (1H, s), 6.41 (1H, brs) corresponding to δ_C 154.7, 119.9], a

methoxy signal [$\delta_{\rm H}$ 3.62 (3H, s), $\delta_{\rm C}$ 52.0], three carbonyl groups ($\delta_{\rm C}$ 165.7, 167.8, 172.5) and one sixcarbon sugar ($\delta_{\rm C}$ 101.2, 74.7, 77.9, 71.5, 78.6, 62.8).

Position 1		2	3
$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m C}$	$\delta_{ m C}$
6.09 (1H, brd)	93.7	95.2	92.9
7.52 (1H, s)	154.7	155.2	153.
	109.2	109.5	129.
4.84 (1H, dd, <i>J</i> =3.6, 12.0 Hz)	34.3	31.8	30.0
	147.2	130.6	107.
6.41 (1H, brs)	119.9	125.0	123.
	165.7	13.8	13.0
2.96 (1H, dd, <i>J</i> =3.6, 13.2 Hz), 2.26 (1H, t, <i>J</i> =12.6 Hz)	42.2	41.4	39.5
	172.5	173.1	170.
	167.8	168.7	166.
2.89 (1H, td, <i>J</i> =2.4, 13.8 Hz), 2.30 (1H, dd, <i>J</i> =1.8, 15.0	30.8	36.5	34.8
4.67(1H, dt, <i>J</i> =3.6, 11.2 Hz)	68.3	72.3	70.1
4.78 (1H, d, <i>J</i> =7.8 Hz)	101.2	100.9	99.0
3.27 (1H, m)	74.7	74.8	73.2
3.33 (1H, t, <i>J</i> =9.6Hz)	77.9	78.0	73.5
3.23 (1H, m)	71.5	71.6	69.9
3.27 (1H, m)	78.6	78.5	76.4
3.82 (1H, dd, J=2.4, 12.0 Hz), 3.64 (1H, dd, J=1.8, 12.0	62.8	62.8	61.1
	123.3	130.8	128.
			129.
6.42 (1H, s)			115.
			155.
			115.
6.60 (1H, s)			129.
			51.2
(, -/)			102.
			73.2
			77.3
			70.1
			76.5
			64.0
	$\overline{\delta_{H}}$ 6.09 (1H, brd) 7.52 (1H, s) 4.84 (1H, dd, J=3.6, 12.0 Hz) 6.41 (1H, brs) 2.96 (1H, dd, J=3.6, 13.2 Hz), 2.26 (1H, t, J=12.6 Hz) 2.89 (1H, td, J=2.4, 13.8 Hz), 2.30 (1H, dd, J=1.8, 15.0 4.67(1H, dt, J=3.6, 11.2 Hz) 4.78 (1H, d, J=7.8 Hz) 3.27 (1H, m) 3.33 (1H, t, J=9.6Hz) 3.23 (1H, m) 3.27 (1H, m)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table1. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) spectral data of compound **1** and ¹³C NMR (150 MHz) spectral data of compounds **2**, **3** (CD₃OD, δ /ppm, *J*/Hz).

The ¹H- and ¹³C-NMR data of **1** were similar to those of a secoiridoid, oleuropeinic acid [6] except the resonance signals belonging to the benzene ring. In combination with the HMBC experiment (Figure 2), the part A of **1** was determined. According to molecular formula $C_{50}H_{56}O_{30}$, compound **1** was assigned as 4', 5'-(2'-hydroxy ligustrosidic acid) dimer.

Additionally, two known secoiridoids, (8E)-nuezhenide (2) [6-8] and specnuezhenide (3) [9] were obtained and identified by comparing their spectroscopic data with those reported in literatures.

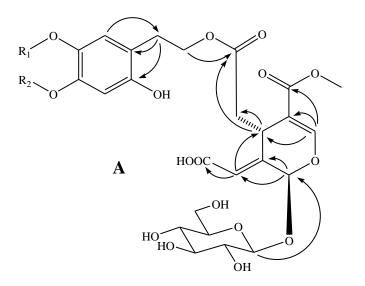


Figure 2. Key HMBC correlations of compound 1.

3.2 Antioxidant activity

All the three compounds were tested for their antioxidant activity in the diphenylpicrylhydrazyl (DPPH) radical scavenging assay using a modified established protocol [10-11]. The IC₅₀ values for compounds (**1-3**) were found to be 7.83, 391.13, 1100 µg/mL, respectively. The assay was done in comparison to ascorbic acid (IC₅₀ = 2.45 µg/mL) which was taken as positive control.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 81274079) and National Basic Research Program of China (No. 2012CB724001).

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

References

- [1] Pharmacopoeia Commission of the Ministry of Public Health, "Chinese Pharmacopoeia, Part I," 2010 edition, Chemical Industrial Press, Beijing, China, 2010.
- [2] X. Yang and G. h. Jiang (2008). Current Situation and Prospect of Research and Development on the Fruit of Glossy Privet, *Lishizhen Med. Materia. Medica. Res.* **19**, 2987-2990.
- [3] W. Huang and Y. F. Yang (2003). Pharmacological and Clinical Research Progress of Fructus Ligustri Lucidi and its effective components, *Modern J. Integ. Trad. Chin. Wester. Med.* **12**, 772-774.
- [4] K. Inoue, T. Nishioka, T. Tanahashi and H. Inouye (1982). Three secoiridoid glucosides from *Ligustrum japonicum*, Phytochemistry. **21**, 2305-2311.
- [5] M. Kikuchi and R. Kakuda (1999). Studies on the Constituents of *Ligustrum* Species. XIX. : Structures of Iridoid Glucosides from the Leaves of *Ligustrum lucidum* AIT. Yakugaku Zasshi. **119**, 444-450.
- [6] X. J. Huang, Y. Wang, Z. Q. Yin and W. C. Ye (2010). Two new dimeric secoiridoid glycosides from the fruits of *Ligustrum lucidum*, *J. Asian Nat. Prod. Res.* **12**, 685-690.
- [7] S. C. Ma, Z. D. He, X. L. Deng, P. P. But, V. E. Ooi, H. X. Xu, S. H. Lee and S. F. Lee (2001). In vitro evaluation of secoiridoid glucosides from the fruits of *Ligustrum lucidum* as antiviral agents, *Chem. Pharm. Bull.* **49**, 1471-1473.
- [8] H. Inouye and T. Nishioka (1972). U"ber die monoterpenglucoside und verwandte naturstoffe—XIX: U"ber die struktur des nu"zhenids, eines bitter schmeckenden glucosids aus Ligustrum lucidum sowie Ligustrum japonicum, *Tetrahedron* 28, 4231-4237.

- [9] L. F. Shi, Y. Y. Cao, H. S. Chen and J. P. Dong (1997). Isolation and identification of two new secoiridoids of water-soluble chemical constituents from the fruits of *Ligustrum lucidum* Ait., *Acta Pharm. Sin.* **32**, 442-446.
- [10] M. S. Blois (1958). Antioxidant determinations by the use of a stable free radical, *Nature* **26**, 1199-1200.
- [11] A. Yildirim, A. Mavi and A. A. Kara (2003). Antioxidant and antimicrobial activities of *Polygonum cognatum* Meissn extracts, *J. Sci. Food Agric.* **83**, 64-69.

© 2015 ACG Publications