Supporting Information

Two new flavone glycosides from Chenopodium ambrosioides growing wildly in Egypt

Hala M. Hammoda*1, Fathalla M. Harraz1, Maged G. Al Ghazouly1,2, Mohamed M. Radwan1,4, Mahmoud A. ElSohly3,4, Amira S. Wanas4,5, Samar M. Bassam2

1 Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University 21521, Alexandria, Egypt
2 Department of Pharmacognosy, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
3 Department of Pharmaceutics, School of Pharmacy, University of Mississippi, MS 38677, USA
4 National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University MS 38655, USA
5 Department of Pharmacognosy, Faculty of Pharmacy, University of Minia, Egypt

Table of Contents

S1: UV spectra of compound 1 3
S2: 1H-NMR spectrum (400 MHz, DMSO-d6) of compound 1 4
S3: COSY spectrum (400 MHZ) of compound 1 5
S4: Broad band decoupled 13C- NMR (100 MHz) of compound 1 6
S5: DEPT spectrum of compound 1 (from 15 to 210) 7
S6: HMQC spectra of compound 1 8
S7: NOESY spectrum of compound 1 9
S8: HRESI-MS spectrum of 1 (positive mode) 10
S9: HRESI-MS spectrum of 1 (negative mode) 11
S10: UV spectra of compound 2 12
S11: 1H-NMR spectrum (400MHz, DMSO-d6) of compound 2 13
S12: COSY spectrum (400 MHz) of compound 2 14
S13: Broad band decoupled 13C-NMR spectra (100 MHz) of compound 2

S14: DEPT spectrum of compound 2 (from 0 to 135)

S15: HRESI-MS spectrum of 1 (positive mode)

S16: S7: HRESI-MS spectrum of 1 (negative mode)
S1: UV spectra of compound 1
Scutellarein-7-O-rhamnosyl (1→2) rhamnosyl (1→2) rhamnoside (1): yellowish white amorphous powder. UV (MeOH): λ_{max} (A) 349 (0.158), 265 (0.371). UV (MeOH/MeONa): 397 (0.232), 270 (0.399). UV (MeOH/AlCl3): 389 (0.163), 339 (0.214), 272 (0.403). UV (MeOH/AlCl3/HCl): 388 (0.219), 330 (0.228), 274 (0.410). UV (MeOH/AcOna): 352 (0.191), 265 (0.467). 1H NMR (400 MHz, DMSO-d$_6$): δ (ppm) = 6.42 (1H, s, H-$3'$); 6.74 (1H, s, H-8); 7.75 (2H, d, $J=8.4$ Hz, H-$2'$, H-$6'$); 6.90 (2H, d, $J=8.4$ Hz, H-$3'$, H-$5'$); 5.75 (1H, br.s, H-$1''$), 3.81 (1H, s, H-$2''$), 0.79 (3H, d, $J=5.4$ Hz, H-$1'''$), 3.96 (1H, s, H-$2'''$), 0.84 (3H, d, $J=5.2$, H-$6''''$), 5.28 (1H, br.s, H-$1''''$), 1.10 (3H, d, $J=5.2$, H-$6'''$), 3.15-4.35 (overlapped remaining protons of sugars). 13C NMR (100 MHz, DMSO-d$_6$): δ (ppm) = 158.2 (C, C-2); 103.1 (CH, C-3); 172.9 (C, C-4); 158.2 (C, C-5); 130.1 (C, C-6); 162.1 (C, C-7); 94.9 (CH, C-8); 156.6 (C, C-9); 109.5 (C, C-10); 120.6 (C, C-1'); 131.1 (CH, C-2',C-6'); 115.9 (CH, C-3', C-5'), 162.1 (C, C-4'), 102.3 (CH, C-1''), 77.3 (CH, C-2''), 71.1 (CH, C-3''), 72.9 (CH, C-4''), 70.3 (CH, C-5''), 18.0 (CH$_3$, C-6''), 99.9 (CH, C-1'''), 77.2 (CH, C-2''''), 71.6 (CH, C-3'''), 73.0 (CH, C-4'''), 70.5 (CH, C-5'''), 18.4 (CH$_3$, C-6'''), 98.9 (CH, C-1''''), 70.8 (CH, C-2''''), 72.1 (CH, C-3''''), 73.8 (CH, C-4''''), 70.7 (CH, C-5''''), 18.7 (CH$_3$, C-6''''). HRMS: positive ion mode: m/z 747.224 [M+ Na]$^+$, negative ion mode: m/z 577.1666 [M-Rha]$^-$.

S2: 1H-NMR spectrum (400MHz, DMSO-d$_6$) of compound 1
S3: COSY spectrum (400 MHz) of compound "A2"
S4: Broad band decoupled 13C-NMR spectra (100 MHz) of compound 1
S5: DEPT spectrum of compound 1 (from 0 to 210)
S6: HMQC spectra of compound 1
Figure: NOESY spectrum of compound "A2"

S7: NOESY spectrum of compound 1
S8: HRESI-MS spectrum of 1 (positive mode)
S9: HRESI-MS spectrum of 1 (negative mode)
S10: UV spectra of compound 2
Scutellarein-7-O-rhamnosyl (1→2) rhamnoside (2): yellowish white amorphous powder. UV (MeOH): \(\lambda_{\text{max}} \) (A) 344 (0.055), 267 (0.181). UV (MeOH/MeONa): 389 (0.060), 268 (0.280). UV (MeOH/AlCl3): 399 (0.060), 352 (0.109), 276 (0.246). UV (MeOH/AlCl3/HCl): 395 (0.079), 347 (0.142), 276 (0.285). UV (MeOH/AcONa): 347 (0.068), 266 (0.263). \(^1\)H NMR (400 MHz, DMSO-\(d_6 \)): \(\delta \) (ppm) = 6.41 (1H, s, H-3); 6.74 (1H, s, H-8); 7.75 (2H, d, J=8.4, H-2', H-6'); 6.68 (2H, d, J=8.4, H-3', H-5'); 5.52 (1H, br.s, H-1''), 1.15 (6H, d, J=5.2, H-6'', H-6'''), 5.28 (1H, br.s, H-1''''), 3.00-4.00 (overlapped remaining protons of sugars). \(^13\)C NMR (125 MHz, DMSO-\(d_6 \)): \(\delta \) (ppm) = 162.1 (C, C-2); 102.2 (CH, C-3); 178.2 (C, C-4); 158.2 (C, C-5); 134.8 (C, C-6); 161.4 (C, C-7); 94.8 (CH, C-8); 156.5 (C, C-9); 106.3 (C, C-10); 120.2 (C, C-1'''); 131.1 (CH, C-2', C-6''); 116.0 (CH, C-3', C-5'), 161.5 (C, C-4'), 99.9 (CH, C-1'''), 79.5 (CH, C-2'''), 70.7 (CH, C-3'''), 72.0 (CH, C-4'''), 70.5 (CH, C-5'''), 17.9 (CH, C-6''), 98.8 (CH, C-1''''), 71.1 (CH, C-2''''), 71.6 (CH, C-3''''), 72.8 (CH, C-4''''), 70.6 (CH, C-5''''), 18.4 (CH, C-6''''). HRMS: positive ion mode: m/z 579.1692 [M+H]+, negative ion mode: m/z 577.1608 [M-H]-.

S11: \(^1\)H-NMR spectrum (400 MHz, DMSO-d6) of compound 2.
S12: COSY spectrum (400 MHz) of compound 2
Figure 74: 13C-NMR of compound 1

S13: Broad band decoupled 13C- NMR (100 MHz) of compound 2
S14: DEPT spectrum of compound 2 (from 15 to 135)
S15: HRESI-MS spectrum of 2 (positive mode)
S16: HRESI-MS spectrum of 2 (negative mode)