Supporting Information

Two New Prenylated Stilbenes with an Irregular Sesquiterpenyl Side Chain from Propolis from Fiji Islands

Boryana Trusheva1*, Kristina Stancheva1, Narendra Gajbhiye2, Rosa Dimitrova1, Milena Popova1, Rajneeta Saraf3 and Vassya Bankova1

1Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria

2Directorate of Medicinal and Aromatic Plants Research, Indian Council of Agricultural Research, 387 310 Boriavi, Anand, Gujarat, India

3The University of the South Pacific, School of Biological and Chemical Sciences, P.O. Box 1425, Suva, Fiji

Table of Contents

Table of Contents

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1: Expansion of HREIMS Spectrum of Compound 1 (Solomonin B)</td>
<td>3</td>
</tr>
<tr>
<td>S2: 1H-NMR (600 MHz, DMSO-d6) Spectrum of Compound 1 (Solomonin B)</td>
<td>4</td>
</tr>
<tr>
<td>S3: Expansion of the 1H-NMR Spectrum of Compound 1 (Solomonin B)</td>
<td>5</td>
</tr>
<tr>
<td>S4: Expansion of the 1H-NMR Spectrum of Compound 1 (Solomonin B)</td>
<td>6</td>
</tr>
<tr>
<td>S5: Expansion of the 1H-NMR Spectrum of Compound 1 (Solomonin B)</td>
<td>7</td>
</tr>
<tr>
<td>S6: 13C-NMR (125 MHz, DMSO-d6) Spectrum of Compound 1 (Solomonin B)</td>
<td>8</td>
</tr>
<tr>
<td>S7: DEPT (125 MHz, DMSO-d6) Spectrum of Compound 1 (Solomonin B)</td>
<td>9</td>
</tr>
<tr>
<td>S8: COSY (600 MHz, DMSO-d6) Spectrum of Compound 1 (Solomonin B)</td>
<td>10</td>
</tr>
<tr>
<td>S9: HSQC (600 MHz, DMSO-d6) Spectrum of Compound 1 (Solomonin B)</td>
<td>11</td>
</tr>
<tr>
<td>S10: HMBC (600 MHz, DMSO-d6) Spectrum of Compound 1 (Solomonin B)</td>
<td>12</td>
</tr>
<tr>
<td>S11: Expansion of HREIMS Spectrum of Compound 2 (Solomonin C)</td>
<td>13</td>
</tr>
<tr>
<td>S12: EIMS Spectrum of Compound 2 (Solomonin C)</td>
<td>14</td>
</tr>
</tbody>
</table>
S13: 1H-NMR (600 MHz, DMSO-d_6) Spectrum of Compound 2 (Solomonin C) 15
S14: Expansion of the 1H-NMR Spectrum of Compound 2 (Solomonin C) 16
S15: Expansion of the 1H-NMR Spectrum of Compound 2 (Solomonin C) 17
S16: Expansion of the 1H-NMR Spectrum of Compound 2 (Solomonin C) 18
S17: HSQC (600 MHz, DMSO-d_6) Spectrum of Compound 2 (Solomonin C) 19
S18: 1H-NMR (600 MHz, DMSO-d_6) Spectrum of Compound 3 (Glyasperin A) 20
S19: 1H-NMR (600 MHz, DMSO-d_6) Spectrum of Compound 4 (Kumatakenin) 21
S20: 1H-NMR (600 MHz, DMSO-d_6) Spectrum of Compound 5 (Macarangin) 22
S21: 1H-NMR (600 MHz, CDCl$_3$) Spectrum of Compound 6 (Mangiferolic acid) 23
S22: GC/MS fingerprint of ethanol extract of Fijian propolis (after silylation) 24
S1: Expansion of HREIMS Spectrum of Compound 1 (Solomonin B)
S2: 1H-NMR (600 MHz, DMSO-d_6) Spectrum of Compound 1 (Solomonin B)

Solomonin B (1): yellow resin. 1H-NMR (DMSO-d_6, 600 MHz), δ: 1.35 (m, H-5’’), 1.53 (3H, s, H-10”), 1.55 (3H, s, H-3’’’), 1.61 (3H, s, H-11’’), 1.67 (3H, s, H-12’’), 1.78 (m, H-4’’’), 1.94 (m, H-6”), 1.97 (m, H-7”), 3.16 (2H, d, H-1”), 3.82 (3H, s, OCH$_3$), 4.60 (1H, d, H-1’’’a), 4.69 (1H, q, H-1’’’b), 4.98 (1H, m, H-8”), 5.15 (1H, m, H-2’’’), 6.44 (2H, s, H-2/6), 6.74 (1H, d, H-5”), 6.78 (1H, d, H-8), 6.83 (1H, d, H-7), 6.92 (1H, dd, H-6’’’), 7.15 (1H, d, H-2’’). 13C-NMR (DMSO-d_6, 150 MHz), δ: 135.5 (C-1), 104.2 (C-2/6), 156.0 (C-3/5), 113.8 (C-4), 125.9 (C-7), 127.1 (C-8), 128.6 (C-1”), 109.6 (C-2”), 147.8 (C-3”), 146.4 (C-4”), 115.5 (C-5”), 120.0 (C-6”), 55.6 (OCH$_3$), 22.0 (C-1’’’), 123.0 (C-2’’”), 133.1 (C-3’’”), 37.0 (C-4’’”), 30.5 (C-5’’”), 46.5 (C-6’’”), 31.7 (C-7’’”), 123.0 (C-8’’”), 131.0 (C-9’’”), 17.7 (C-10’’”), 25.6 (C-11’’”), 16.0 (C-12’’”), 111.3 (C-1’’’’), 147.2 (C-2’’’’), 18.4 (C-3’’’’). HREIMS: m/z 462.27034 (calc. for C$_{30}$H$_{38}$O$_4$).
S3: 1H-NMR Spectrum of Compound 1 (Solomonin B) (From 6.40 to 7.18 ppm)
S4: \(^1\text{H}-\text{NMR}\) Spectrum of Compound 1 (Solomonin B) (From 4.50 to 5.20 ppm)
SS5: 1H-NMR Spectrum of Compound 1 (Solomonin B) (From 1.40 to 4.00 ppm)
S6: 13C-NMR (125 MHz, DMSO-d_6) Spectrum of Compound 1 (Solomonin B)
S7: DEPT (125 MHz, DMSO-d_6) Spectrum of Compound 1 (Solomonin B)
S8: COSY (600 MHz, DMSO-d_6) Spectrum of Compound 1 (Solomonin B)
S9: HSQC (600 MHz, DMSO-d_6) Spectrum of Compound 1 (Solomonin B)
S10: HMBC (600 MHz, DMSO-d_6) Spectrum of Compound 1 (Solomonin B)
S11: Expansion of HREIMS Spectrum of Compound 2 (Solomonin C)
S12: EIMS Spectrum of Compound 2 (Solomonin C)
**S13: **1H-NMR (600 MHz, DMSO-d_6) Spectrum of Compound 2 (Solomonin C)

Solomonin C (2): yellow resin. 1H-NMR (DMSO-d_6, 600 MHz), δ: 1.31 (m, H-5”a), 1.38 (m, H-5”b), 1.53 (3H, s, H-10”), 1.55 (3H, s, H-3””), 1.61 (3H, s, H-11”), 1.67 (3H, s, H-12”), 1.79 (m, H-4”), 1.91 (m, H-6”), 1.93 (m, H-7”), 3.15 (2H, d, H-1”), 4.61 (1H, br. s, H-1”a”), 4.69 (1H, br. s, H-1”b”), 4.98 (1H, m, H-8”), 5.14 (1H, m, H-2”), 6.43 (2H, s, H-2/6), 6.74 (2H, d, H-3’/5’), 6.76 (1H, d, H-8), 6.79 (1H, d, H-7), 7.38 (2H, d, H-2’/6’). 13C-NMR (DMSO-d_6, 150 MHz), δ: 135.7 (C-1), 104.4 (C-2/6), 156.3 (C-3/5), 114.0 (C-4), 126.0 (C-7), 127.3 (C-8), 128.5 (C-1”), 128.2 (C-2’/6’”), 115.4 (C-3’/5’), 157.6 (C-4”), 22.4 (C-1””), 123.0 (C-2”), 133.4 (C-3”), 37.4 (C-4”), 30.4 (C-5”), 46.7 (C-6”), 32.1 (C-7”), 123.3 (C-8”), 131.3 (C-9”), 18.3 (C-10”), 26.2 (C-11”), 16.5 (C-12”), 111.6 (C-1””), 147.3 (C-2””), 18.6 (C-3””). HREIMS: m/z 432.26559 (calc. for C$_{29}$H$_{36}$O$_3$).
S14: 1H-NMR Spectrum of Compound 2 (Solomonin C) (From 6.40 to 7.42 ppm)
S15: 1H-NMR Spectrum of Compound 2 (Solomonin C) (From 4.50 to 5.25 ppm)
S16: 1H-NMR Spectrum of Compound 2 (Solomonin C) (From 1.40 to 4.00 ppm)
S17: HSQC (600 MHz, DMSO-d_6) Spectrum of Compound 2 (Solomonin C)
S18: 1H-NMR (600 MHz, DMSO-d_6) Spectrum of Compound 3 (Glyasperin A)
S19: 1H-NMR (600 MHz, DMSO-d_6) Spectrum of Compound 4 (Kumatakenin)
S20: 1H-NMR (600 MHz, DMSO-d_6) Spectrum of Compound 5 (Macarangin)
S21: 1H-NMR (600 MHz, CDCl$_3$) Spectrum of Compound 6 (Mangiferolic acid)
S22: GC/MS fingerprint of ethanol extract of Fijian propolis (after silylation)