Supporting Information

Rec. Nat. Prod. 10:5 (2016) 582-592 Dihydropyridinone Alkaloid Artifacts from Curcuma longa and their Anti-Migration Activity Against HepG2 cells Fatma M. Abdel Bar*

* Pharmacognosy department, Faculty of pharmacy, Mansoura University, Mansoura 35516, Egypt

Table of Contents	Page
Figure 1S: ¹ H-NMR spectrum (DMSO-d6, at 400 MHz) of compound 1.	3
Figure 2S: Expansions of ¹ H-NMR spectrum (400 MHz, DMSO-d6) of compound 1.	3
Figure 3S: APT spectrum (100 MHz, DMSO-d6) of compound 1.	4
Figure 4S: HMBC spectrum (400 MHz, DMSO-d6) of compound 1.	5
Figure 5S: (a) EIMS; (b) HRESIMS spectra of compound 1.	6
Figure 6S: ¹ H-NMR spectrum (400 MHz, Acetone-d6) of compound 2.	7
Figure 7S: APT spectrum (100 MHz, Acetone-d6) of compound 2.	7
Figure 8S: HMBC spectrum (400 MHz, Acetone-d6) of compound 2.	8
Figure 9S: (a) EIMS; (b) HRESIMS spectra of compound 2.	9
Figure 10S: ¹ H-NMR spectrum (400 MHz, DMSO -d6) of compound 3.	10
Figure 11S: APT spectrum (100 MHz, DMSO -d6) of compound3.	10
Figure 12S: HMBC spectrum (400 MHz, DMSO -d6) of compound 3.	11
Figure 13S: (a) EIMS; (b) HRESIMS spectra of compound 3.	12
Figure 14S: ¹ H-NMR spectrum (400 MHz, CDCl ₃) of compound 4.	13

Figure 15S: APT spectrum (100 MHz, CDCl ₃) of compound 4.	13
Figure 16S: HMBC spectrum (400 MHz, CDCl ₃) of compound 4.	14
Figure 17S: (a) EIMS; (b) HRESIMS spectra of compound 4.	15
Figure 18S : ¹ H-NMR spectrum (400 MHz, CDCl ₃) of compound 5 .	16
Figure 19S: APT spectrum (100 MHz, CDCl ₃) of compound 5.	16
Figure 20S: HMBC spectrum (400 MHz, CDCl ₃) of compound 5.	17
Figure 21S: (a) EIMS; (b) HRESIMS spectra of compound 5.	18
Figure 22S : ¹ H-NMR spectrum (400 MHz, CDCl ₃) of compound 6 .	19
Figure 23S: APT spectrum (100 MHz, CDCl ₃) of compound 6.	19
Figure 24S: HMBC spectrum (400 MHz, CDCl ₃) of compound 6.	20
Figure 25S: HRESIMS spectrum of compound 6.	21
Figure 26S : ¹ H-NMR spectrum (400 MHz, CDCl ₃) of compound 7 .	21
Figure 27S: APT spectrum (100 MHz, CDCl ₃) of compound 7.	22
Figure 28S: HMBC spectrum (400 MHz, CDCl ₃) of compound 7.	23
Figure 29S: (a) EIMS; (b) HRESIMS spectra of compound 7.	24
Figure 30S: Thin layer chromatogram [CDCl ₃ - MeOH, 9: 1] showing production of	
compound 1 from curcumin I after 48 h treatment with NH ₄ OH-MeOH (1:4 v/v),	25
visualized under UV light λ_{254} .	
Physcicochemical properties of compounds 1, 3, 4 and 6	26
Table 1S: ¹ H-NMR of compounds 1, 3, 4 and 6.	27
Table 2S: APT data of compounds 1, 3, 4 and 6.	28

Figure 1S: ¹H-NMR spectrum (DMSO-d6, at 400 MHz) of compound 1.

Figure 2S: Expansions of ¹H-NMR spectrum (400 MHz, DMSO-d6) of compound 1.

Figure 3S: APT spectrum (100 MHz, DMSO-d6) of compound 1.

Figure 4S: HMBC spectrum (400 MHz, DMSO-d6) of compound 1.

Figure 5S (a): EIMS spectrum of compound 1.

Figure 5S (b): HRESIMS spectrum of compound 1.

Figure 6S: ¹H-NMR spectrum (400 MHz, Acetone-d6) of compound **2**.

Figure 7S: APT spectrum (100 MHz, Acetone-d6) of compound 2.

Figure 8S: HMBC spectrum (400 MHz, Acetone-d6) of compound 2.

Figure 9S (a): EIMS spectrum of compound 2.

Figure 9S (b): HRESIMS spectrum of compound 2.

Figure 10S: ¹H-NMR spectrum (400 MHz, DMSO -d6) of compound 3.

Figure 11S: APT spectrum (100 MHz, DMSO -d6) of compound 3.

Figure 12S: HMBC spectrum (400 MHz, DMSO -d6) of compound 3.

Figure 13S (a): EIMS spectrum of compound 3.

Figure 13S (b): HREIMS spectrum of compound 3.

Figure 14S: ¹H-NMR spectrum (400 MHz, CDCl₃) of compound 4.

Figure 15S: APT spectrum (100 MHz, CDCl₃) of compound 4.

Figure 16S: HMBC spectrum (400 MHz, CDCl₃) of compound 4.

Figure 17S (a): EIMS spectrum of compound 4.

Figure 17S (b): HRESIMS spectrum of compound 4.

Figure 18S: ¹H-NMR spectrum (400 MHz, CDCl₃) of compound **5**.

Figure 19S: APT spectrum (100 MHz, CDCl₃) of compound 5.

Figure 20S: HMBC spectrum (400 MHz, CDCl₃) of compound 5.

Figure 21S (a): EIMS spectrum of compound 5.

Figure 21S (b): HRESIMS spectrum of compound 5.

Figure 22S: ¹H-NMR spectrum (400 MHz, CDCl₃) of compound 6.

Figure 23S: APT spectrum (100 MHz, CDCl₃) of compound 6.

Figure 24S: HMBC spectrum (400 MHz, CDCl₃) of compound 6.

Figure 25S: HRESIM spectrum of compound 6.

Figure 26S: ¹H-NMR spectrum (400 MHz, CDCl₃) of compound **7**.

Figure 27S: APT spectrum (100 MHz, CDCl₃) of compound 7.

Figure 28S: HMBC spectrum (400 MHz, CDCl₃) of compound 7.

Figure 29S (a): EIMS spectrum of compound 7.

Figure 29S (b): HRESIMS spectrum of compound 7.

Figure 30S: Thin layer chromatogram [CDCl₃- MeOH, 9: 1] showing production of compound **1** from curcumin I after 48 h treatment with NH₄OH-MeOH (1:4 v/v), visualized under UV light λ_{254} .

Physcicochemical properties of compounds 1, 3, 4 and 6

Compound 1: Yellow amorphous powder, m.p. 200-204 °C, IRv_{max} (KBr): 3348, 3002, 2924, 2840, 2812, 1636, 1603, 1558, 1512, 1467, 1428, 1288, 1161, 1030, 962 and 805 cm⁻¹, HRESIMS at m/z 368.14951 (M+H)⁺, {Calcd. for C₂₁H₂₁NO₅ 368.14980}, 390.13022 (M+Na)⁺, {Calcd. 390.13174} and 757.27006 (2M+Na)⁺, {Calcd. 757.27372}. EIMS fragmentation pattern is outlined in figure 3.

Compound **3:** Yellow plates, m.p. 210-215 °C, IRv_{max} (KBr) 3273, 3084, 3017, 2948, 1636, 1602, 1560, 1485, 1438, 1405, 1319, 1276, 1227, 1193, 1168, 1105, 1037, 967 and 918 cm⁻¹ and HRESIMS at m/z 308.12839 (M+H)⁺, {Calcd. for C₁₉H₁₇NO₃ 308.12867}, 330.11371(M+Na)⁺, {Calcd. 330.11061} and 637.23503 (2M+Na)⁺, {Calcd. 637.23146}.

Compound **4:** Yellow amorphous powder, m.p. 137-142 °C, IRv_{max} (KBr) 3444, 2959, 2923, 2853, 1649, 1617, 1595, 1575, 1559, 1514, 1458, 1422, 1399, 1265, 1142, 1098, 1028 and 905 cm⁻¹ and HRESIMS at m/z 394.16489 (M-H)⁻, {Calcd for C₂₃H₂₅NO₅. 394.16545}, 418.15551 (M+Na)⁺, {Calcd. 418.16304} and 813.33199 (2M+Na)⁺, {Calcd. 813.33632}.

Compound **6:** Yellow amorphous powder, m.p. 165-170 °C, IRv_{max} (KBr) 3259, 3075, 2959, 2929, 2837, 1644, 1595, 1565, 1507, 1405, 1279, 1253, 1175, 1121, 1028, 971, 919 and 827 cm⁻¹. HRESIMS at m/z 336.15867 (M+H)⁺, {Calcd. for $C_{21}H_{21}NO_3$ 336.15997}, 334.14518 (M-H)⁻ {Calcd. 334.14432} and 358.14270 (M+Na)⁺, {Calcd. 358.14191}.

Position (H)	1 ^a	3 ^a	4 ^b	6 ^b
2	4.63, 1H, dd (12.4,	4.64, 1H, dd (11.6,	4.63, 1H, dd	4.69, 1H, dd (14.4,
2	5.2)	5.3)	(16.0, 4.0)	4.4)
3 _{eq.}	2.32, 1H, dd (16.4,	2.33, 1H, dd (15.9,	2.46, 1H, dd (16.0,	2.47, 1H, dd (16.4,
	5.2)	5.2)	4.0)	4.4)
$3_{ax.}$	2.54, 1H, dd (16.0,	2.48, 1H, dd (15.8,	2.67, 1H, dd (16.0,	2.67, 1H, dd (16.4,
	12.4)	11.9)	16.0)	14.4)
4				
5	5.14, 1H, s	5.14, 1H, s	5.30, 1H, s	5.31, 1H, s
6				
1`				
2`	7.04, brs	6.77, 2H, d (8.7)	6.90, 1H*	7.36, 2H, d (8.4)
3`		7.24, 2H, d (8.5)		6.89, 2H, d (8.8)
4`				
5`	6.77, 1H, d (8.0)	7.24, 2H, d (8.5)	6.78, 1H, d (8.0)	6.89, 2H, d (8.8)
6`	6.84, 1H, dd (7.6, 1.6)	6.77, 2H, d (8.7)	6.88, 1H, dd (8.0, 2.0)	7.36, 2H, d (8.4)
1``				
2``	7.15, brs	6.79, 2H, d (8.7)	6.92, 1H*	7.41, 2H, d (8.8)
3``		7.39, 2H, d (8.6)		6.93, 2H, d (8.8)
4``				
5``	6.81, 1H, d (8.8)	7.39, 2H, d (8.6)	6.82, 1H, d (8.0)	6.93, 2H, d (8.8)
6``	6.96, 1H, dd (8.0, 2.0)	6.79, 2H, d (8.7)	6.95, 1H, dd (8.0, 2.0)	7.41, 2H, d (8.8)
7``	7.35, 1H, d (16.4)	7.35, 1H, d (16.6)	6.87, 1H, d, (16.0)	7.01, d (16.4)
8``	6.60, 1H, d (16.4)	6.53, 1H, d (16.4)	6.36, 1H, d (16.0)	6.43, 1H, d (16.4)
-NH-	7.47, brs	7.54, brs.	4.87, brs	5.35, brs
-OCH ₃	3.82, 3H, s		3.84, 3H, s	3.82, 3H, s
-OCH ₃	3.79, 3H, s		3.84, 3H, s	3.83, 3H, s
-OCH ₃			3.85, 3H, s	
-OCH ₃			3.85, 3H, s	
-OH	9. 10, brs	9.50, brs.		
-OH	9.40, brs	9.80, brs.		

Table S1: ¹H-NMR of compounds **1**, **3**, **4** and **6** (at 400 MHz, ^a in DMSO-d6, ^b in CDCl₃, * Overlapped signal, δ in ppm, *J* in Hz).

Position (C)	1 ^a	3 ^a	4 ^b	6 ^b
2	56.8 (CH)	56.3 (CH)	58.5 (CH)	57.8, (CH)
3	44.4 (CH ₂)	44.3 (CH ₂)	44.5 (CH ₂)	44.3 (q)
4	190.9 (q)	190.8 (q)	192.9 (q)	192.8 (q)
5	97.7 (CH)	97.6 (CH)	101.2 (CH)	100.3 (CH)
6	159.1 (q)	159.2 (q)	157.8 (q)	158.4 (q)
1`	132.4 (q)	131.9 (q)	132.9 (q)	132.5 (q)
2`	110.8 (CH)	128.5 (CH)	109.9 (CH)	128.1 (CH)
3`	148.0 (q)	115.6 (CH)	149.4 (q)	114.4 (CH)
4`	146.6 (q)	159.1 (q)	149.3 (q)	159.7 (q)
5`	115.7 (CH)	115.6 (CH)	111.2 (CH)	114.4 (CH)
6`	119.7 (CH)	128.5 (CH)	119.3 (CH)	128.1 (CH)
1``	127.6 (q)	127.1 (q)	128.0 (q)	127.8 (q)
2``	111.9 (CH)	129.4 (CH)	111.9 (CH)	128.9 (CH)
3``	148.6 (q)	116.3 (CH)	150.6 (q)	114.4 (CH)
4``	148.3 (q)	157.4 (q)	149.4 (q)	160.8 (q)
5``	116.1 (CH)	116.3 (CH)	111.4 (CH)	114.4 (CH)
6``	122.0 (CH)	129.4 (CH)	121.6 (CH)	128.9 (CH)
7``	135.7 (CH)	135.5 (CH)	134.1 (CH)	134.2 (CH)
8``	120.5 (CH)	120.2 (CH)	120.8 (CH)	120.6 (CH)
-OCH ₃	56.0 (CH ₃)		56.0 (CH ₃)	55.4 (CH ₃)
-OCH ₃	56.1 (CH ₃)		56.0 (CH ₃)	55.4 (CH ₃)
-OCH ₃			56.0 (CH ₃)	
-OCH ₃			56.1 (CH ₃)	

Table S2: APT data of compounds 1, 3, 4 and 6 (at 100 MHz, ^a in DMSO-d6, ^b in CDCl₃, δ in ppm).