

Rec. Nat. Prod. 10:5 (2016) 645-648

records of natural products

Leucasinoside: A New Abietane Diterpenoid Glycoside from

Leucas zeylanica

Xiaopo Zhang¹, Mei Gui¹, Caiyun Zhang¹, Changyu Chen², Lei Yu^{*2} and Jie Liu^{*3}

¹School of Pharmaceutical Science, Hainan Medical University, Haikou 571199, China ²Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, P. R. China ³Laboratory of Antibiotics, Hainan Institute for Drug Control, Haikou 570216, P. R. China

(Received November 11, 2015; Revised December 12, 2015; Accepted December 12, 2015)

Abstract: A new abietane diterpenoid glycoside, leucasinoside, along with two known ones were obtained from the aerial parts of *Leucas zeylanica*. Its structure was characterized by comprehensive analyses of ¹H, ¹³C NMR, COSY, HSQC, HMBC, NOESY spectroscopic, and HREIMS mass spectrometric data. All the isolates were evaluated for their anti-inflammatory activities on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7, and the new compound showed moderate inhibitory activity.

Keywords: *Leucas zeylanica*; abietane diterpenoid; leucasinoside; anti-inflammatory. © 2016 ACG Publications. All rights reserved.

1. Plant Source

During the process of finding secondary metabolites with interesting chemical structures and significant biological activities from Hainan Island of China, a new abietane diterpenoid glycoside along with two known ones were isolated from the aerial parts of *Leucas zeylanica* (Figure 1).

The aerial parts of *L. zeylanica* were collected in September 2014 from Changjiang, Hainan Province, China and identified by Prof. Niankai Zeng, School of Pharmaceutical Science, Hainan Medical University. A voucher specimen (NO. LZ201409) was deposited at the herbarium of School of Pharmaceutical Science, Hainan Medical University.

2. Previous Studies

Leucas zeylanica is a medicinal herb used in treating influenza, inflammation, and mainly distributed in southern regions of China. However, there is no report concerning its chemical constituents till now.

^{*} Corresponding author: E- Mail: <u>yulei912@163.com</u>; <u>liuniu96407@126.com</u>; (J. Liu).

3. Present Study

The air-dried and powdered aerial parts of *Leucas zeylanica* (L.) R. Brown (2.0 kg), collected from Changjiang City in Hainan province of China, were extracted twice with methanol. Removal of the methanol under reduced pressure yielded a methanol extract (220 g). The residue was dissolved in water and partitioned with petroleum ether, ethyl acetate, and n-butanol, respectively. The n-butanol fraction (85 g) was subjected to silica gel column chromatography using a CH₂Cl₂-MeOH gradient (from 1:0 to 1:1) as eluent, to yield six fractions (Fr. A-F). Fr. D (12.5 g) was further separated by Sephadex LH-20 column eluting with MeOH to afford six subfractions (Sbuf. 1-6) Then, Subf. 4 was subjected to semi-preparative HPLC with MeOH-H₂O (35:65) as eluent to give compounds **2** (5.0 mg) and **3** (8.0 mg). Subf. 5 was further separated by semi-preparative HPLC with MeOH-H₂O (40: 60) as the eluent to give compound **1** (4.0 mg).

leucasinoside (1): White amorphous solid, $[\alpha]_{D}^{25} = +12.0$ (c = 0.1, MeOH); UV (CHCl₃): λ_{max} (log ϵ): 206 (4.42), 280 (3.66); IR ν_{max} (CHCl₃): = 3430, 2930, 2865, 1725, 1621, 1280, 1076 cm⁻¹; ¹H NMR (600 MHz, CD₃OD) δ (ppm)= 1.07 (1H, m, H-1 α), 3.32 (1H, m, H-1 β), 1.47 (1H, m, H-2 α), 1.98 (1H, dd, J = 11.2, 7.2 Hz, H-2 β), 1.06 (1H, m, H-3 α), 2.23 (1H, d, J = 10.6 Hz, H-3 β), 1.48 (1H, d, J = 10.6 Hz, H-5), 2.14 (1H, dd, J = 11.2, 3.6 Hz, H-6 α), 1.88 (1H, dd, J = 11.2, 7.2 Hz, H-6 β), 2.75 (2H, m, H-7), 6.37 (1H, s, H-14), 3.67 (1H, m, H-15), 3.60 (1H, dd, J = 12.0, 7.2 Hz, H-16a), 3.45 (1H, dd, J = 12.0, 2.4 Hz, H-16b), 1.13 (3H, d, J = 6.6 Hz, H-17), 1.28 (3H, s, H-18), 1.27 (3H, s, H-20), 4.38 (1H, d, J = 7.8 Hz, H-1'), 3.41 (1H, m, H-2'), 3.27 (1H, m, H-3'), 3.28 (1H, m, H-4'), 3.43 (1H, m, H-5'), 3.89 (1H, brd, J = 12.0 Hz, H-6'a), 3.70 (1H, dd, J = 12.0, 6.0 Hz, H-6'b); ¹³ C NMR (150 MHz, CD₃OD): δ (ppm) = 37.5 (CH₂, C-1), 21.2 (CH₂, C-2), 39.3 (CH₂, C-3), 45.3 (C, C-4), 57.1 (CH, C-5), 22.6 (CH₂, C-6), 35.0 (CH₂, C-7), 135.8 (C, C-8), 133.7 (C, C-9), 41.4 (C, C-10), 149.6 (C, C-11), 143.5 (C, C-12), 136.7 (C, C-13), 118.5 (CH, C-14), 35.1 (CH, C-15), 69.3 (CH₂, C-16), 18.6 (CH₃, C-17), 30.0 (CH₃, C-18), 182.3 (C, C-19), 17.5 (CH₃, C-20), 107.9 (CH, C-1'), 75.8 (CH, C-2'), 79.2 (CH, C-3'), 71.7 (CH, C-4'), 78.2 (CH, C-5'), 63.2 (CH, C-6'). HRESIMS: m/z 533.2369 ([M+Na]⁺, calcd. C₂₆H₃₈O₁₀Na⁺ for 533.2363).

Assay for inhibitory ability against LPS-induced NO production: RAW264.7macrophages were seeded in 24-well plates (105 cells/well). The cells were co-incubated with drugs and LPS (1 μ g/mL) for 24 h. The amount of NO was assessed by determining the nitrite concentration in the cultured RAW264.7 macrophage supernatants with Griess reagent. Aliquots of supernatants (100 μ L) were incubated, in-sequence, with 50 μ L of 1% sulfanilamide and 50 μ L of 0.1% naphthylethylenediamine in 2.5% phosphoric acid solution. The absorbance was recorded on a microplate reader at a wavelength of 570 nm [1].

The dried and powdered aerial parts of *L. zeylanica* were extracted with methanol. The crude extract obtained after evaporation of the solvent was subjected to conventional purification procedures and resulting in the isolation of a new abietane diterpenoid glycoside (1) along with two known ones (2, 3) as shown in Figure 1.

Figure 1. Structures of compounds 1-3 isolated from L. zeylanica.

Compound 1 was isolated as a white amorphous powder. Its molecular formula was established by the positive HRESIMS (m/z 533.2369 [M + Na]⁺, calcd for C₂₆H₃₈O₁₀Na 533.2363). Its ¹H NMR spectrum of 1 indicated the existence of three methyl group at $\delta = 1.13$ (d, 6.6 Hz, H-17), 1.28 (s, H-18), 1.27 (s, H-20). Moreover, it showed signals owing to one methylene at $\delta = 3.45$ (dd, 12.0, 2.4 Hz, H-16a), 3.60 (dd, 12.0, 7.2 Hz, H-16b), and one olefinic methine at δ 6.37 (s, H-14). The ¹H-NMR spectra data also exhibited signals due to a β -glucopyranosyl moiety with the anomeric proton at δ = 4.38 (d, 7.8 Hz). In addition to protonated carbon signals corresponding to the above protons, the 13 C NMR spectrum of 1 showed 20 carbon signals attributable to three methyls at $\delta = 18.6, 30.0, 17.5$; six methylenes (one oxygenated) at $\delta = 37.5, 21.2, 39.3, 22.6, 35.0, 69.3$; three methines (one olefinic) at $\delta_{\rm C}$ 57.1, 118.5, 35.1; and eight quaternary carbons (five olefinic) at $\delta = 45.3$, 135.8, 133.7, 41.4, 149.6, 143.5, 136.7, 182.3, along with six carbon signals for a sugar unit. These spectroscopic data are typical signals of a glycosidic diterpene with a tricyclic system including an aromatic ring [2, 3]. Detailed interpretation of ¹H-¹H COSY correlations from H-1 to H-2, H-2 to H-3, H-5 to H-6, H-6 to H-7, H-15 to H-16, and H-15 to H-17 indicated the existence of three isolated spin systems C-1-C-3, C-5-C-7, C-15-C-17 as depicted in Figure 2. In the HMBC spectrum, connections from H-18 ($\delta_{\rm H}$ 1.28) to C-4 ($\delta_{\rm C}$ 45.3), C-19 ($\delta_{\rm C}$ 182.3), from H-20 ($\delta_{\rm H}$ 1.27) to C-10 ($\delta_{\rm C}$ 41.4), C-5 (57.1), C-9 ($\delta_{\rm C}$ 133.7), from H-7 $(\delta_{\rm H} 2.75)$ to C-8 ($\delta_{\rm C} 135.8$), and from H-15 ($\delta_{\rm H} 3.67$) to C-12 ($\delta_{\rm C} 143.5$), C-13 ($\delta_{\rm C} 136.7$), C-14 ($\delta_{\rm C} 136.7$) 118.5), C-16 ($\delta_{\rm C}$ 69.3), C-17 ($\delta_{\rm C}$ 30.0) allowed the construction of 11, 16-dihydroxyabieta-8, 11, 13triene framework in 1. The HMBC correlations (Figure. 2) from H-1' ($\delta_{\rm H}$ 4.38) to C-12 ($\delta_{\rm C}$ 143.5) indicated that the β -D-glucopyranosyl unit is located at C-12. These data above were similar to those of 12-O- β -D-glucopyranosyl-3, 11, 16-trihydroxyabieta-8, 11, 13-triene, except for the methyl group was replaced by carboxyl group and the absence of C-3 hydroxyl group in 1 [4]. The relative configuration of 1 was determined on the basis of NOESY spectrum [5, 6]. The observed NOEs from H₃-18 to H-5 ($\delta_{\rm H}$ 1.48), H-20 to H-2 β ($\delta_{\rm H}$ 3.32), H-6 β ($\delta_{\rm H}$ 1.88), and H-14 ($\delta_{\rm H}$ 6.37) to H-7, H₃-18 allowed determination of the relative stereochemistry as depicted in Figure 1. The configuration of C-15 was tentatively determined to be S, since the NMR spectra of C-15, C-16, C-17 were identical with the referential compound. Collectively, 1 was characterized as 12-O- β -D-glucopyranosyl-11, 16dihydroxyabieta-8, 11, 13-triene with a given name of leucasinoside. (Spectroscopic data provided in Supporting Information).

Figure 2. Important ${}^{1}\text{H}{}^{-1}\text{H}{}^{-}\text{COSY}(--)$ and HMBC (\rightarrow) correlations of leucasinoside (1).

The known compounds were identified as 19-O- β -D-carboxyglucopyranosyl-12-O- β -D-glucopyranosyl-11, 16-dihydroxyabieta-8, 11, 13-triene (2) [4], 12, 19-O- β -D-diglucopyranosyl-11, 16-dihydroxyabieta-8, 11, 13-triene (3) [7]. Both of them were obtained from this plant for the first time.

The three isolated compounds were tested on LPS-induced NO production in RAW 264.7 macrophages. Compounds **1-3** showed moderate inhibitory activities with IC_{50} values ranging from 12.6 to 18.8 μ M as shown in Table 1. This result indicated that the new compound had the potent capability in curing inflammation.

Compounds	$IC_{50} (\mu M)^a$
1	12.6 ± 1.2
2	18.8 ± 2.1
3	15.6 ± 1.8
Aminoguanidine ^b	1.8 ± 0.4

 Table 1. Inhibitory activity of compounds 1-3 on LPS-induced NO production.

 Compounds

 IC 50 (µM)^a

^a Value present mean ± SD of triplicate experiments. ^b Positive control substance.

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

References

- [1] G. X. Ma, X. P. Zhang, P. F. Li, Z. Sun, N. Zhu, Y. Zhu, J. Yang, D. L. Chen, H. F. Wu and X. D. Xu (2015). Four new phenolicacid with unusual bicycle [2.2.2] octane moiety from *Clerodendranthus spica tus* and their anti-inflammatory activity, *Fitoterapia* **105**, 61-65.
- [2] F. Piozzi and M. Bruno (2011). Diterpenoids from roots and aerial parts of the genus *Stachys, Rec. Nat. Prod.* **5**, 1-11.
- [3] J. Xu, Y. Sun, M. Wang, Q. Ren, S. Li, H. Wang, X. Sun, D. Q. Jin, H. Sun, Y. Ohizumi and Y. Guo (2015). Bioactive diterpenoids from the leaves of *Callicarpa macrophylla*, J. Nat. Prod. 78, 1563-1569.
- [4] S. Liu, H. Zhu, S. Zhang, X. Zhang, Q. Yu and L. Xuan (2008). Abietane diterpenoids from *Clerodendrum bungei, J. Nat. Prod.* **71**, 755-759.
- [5] M. Y. Bouberte, K. Krohn, H. Hussain, E. Dongo, B. Schulz and Q. Hu (2006). Tithoniamarin and Tithoniamide: A new isocoumarin dimer and a new ceramide from *Tithnonia diversifolia*, *Nat. Prod. Lett.* **20**, 842-849.
- [6] Y. Y. Chen, J. M. Guo, Y. F. Qian, S. Guo, C. H. Ma and J. A. Duan (2013). Toxicity of daphnane-type diterpenoids from Genkwa Flos and their pharmacokinetic profile in rat, *Phytomedicine* **21**, 82-89.
- [7] S. K. Kim, S. B. Cho and H. I. Moon (2010). Anti-complement activity of isolated compounds from the roots of *Clerodendrum bungei* Steud, *Phytother Res.* **24**, 1720-1723.

© 2016 ACG Publications