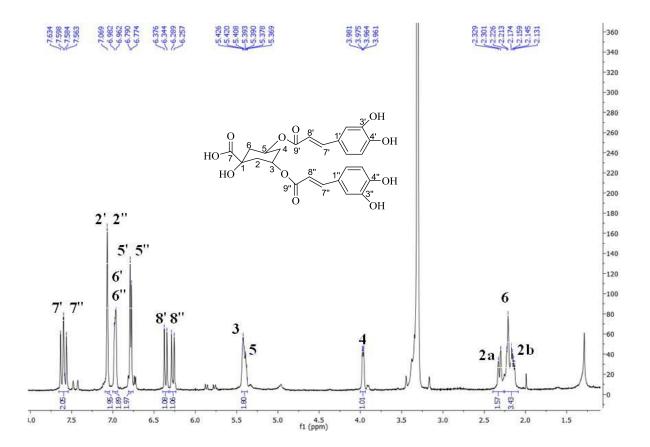
Supporting Information

Rec. Nat. Prod. 10:6 (2016) 701-707

Antioxidant and α-Glucosidase Inhibitory Activities of Isolated Compounds from *Ipomoea aquatica*

Umar Lawal¹, Khozirah Shaari², Intan Safinar Ismail², Alfi Khatib³ and Faridah Abas^{*1, 2}


^a Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia,

^b Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia,

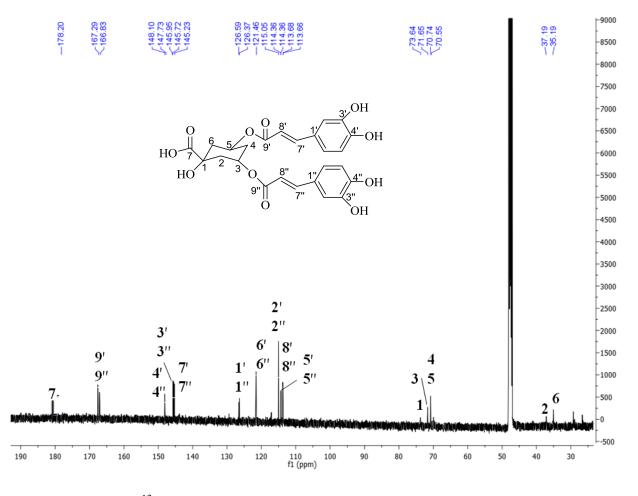
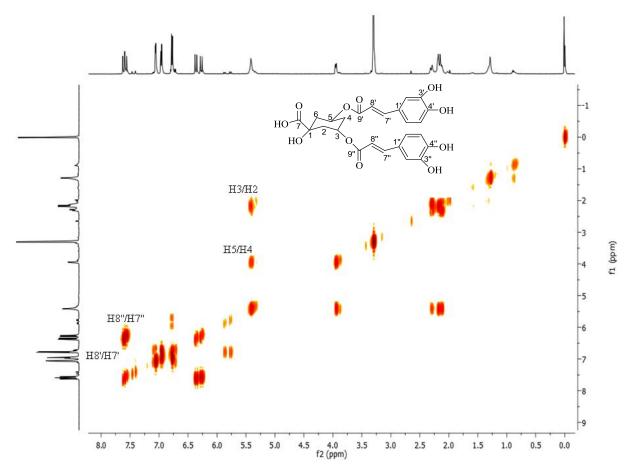
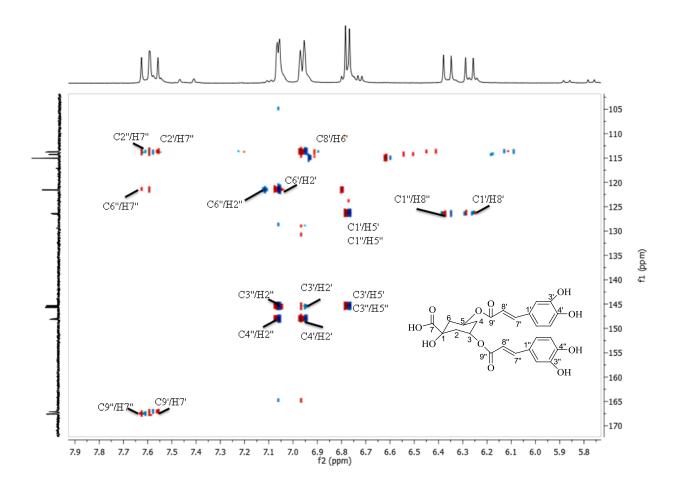
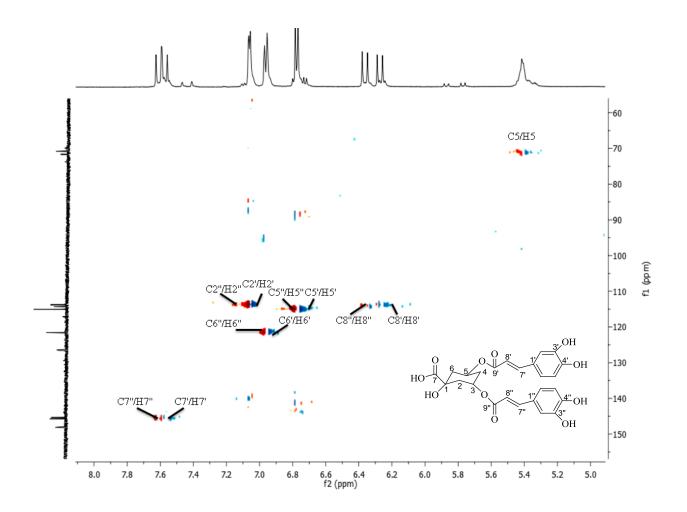
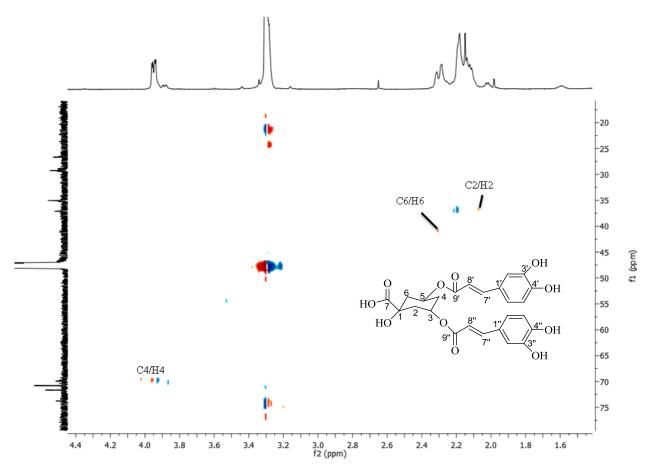

^c Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Malaysia.

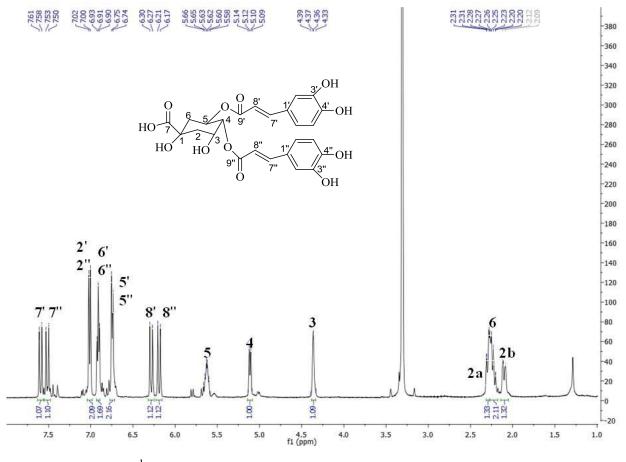
	Table of Contents	Page
S1:	¹ H-NMR (500 MHz, CD ₃ OD) spectrum of compound 1	3
S2:	13 C NMR (500 MHz, CD ₃ OD) spectrum of compound 1	4
S3:	COSY (500 MHz, CD ₃ OD) spectrum of compound 1	5
S4:	HMBC (500 MHz, CD ₃ OD) spectrum of compound 1 (expanded)	6
S5:	HSQC (500 MHz, CD ₃ OD) spectrum of compound 1 (expanded)	7
S6:	HSQC (500 MHz, CD ₃ OD) spectrum of compound 1 (expanded)	8
S7:	¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of compound 2	9
S8:	13 C NMR (500 MHz, CD ₃ OD) Spectrum of compound 2	10
S9:	COSY (500 MHz, CD ₃ OD) spectrum of compound 2	11
S10:	HMBC (500 MHz, CD ₃ OD) spectrum of compound 2 (expanded)	12
S11:	HMBC (500 MHz, CD ₃ OD) spectrum of compound 2 (expanded)	13
S12:	HSQC (500 MHz, CD ₃ OD) spectrum of compound 2 (expanded)	14

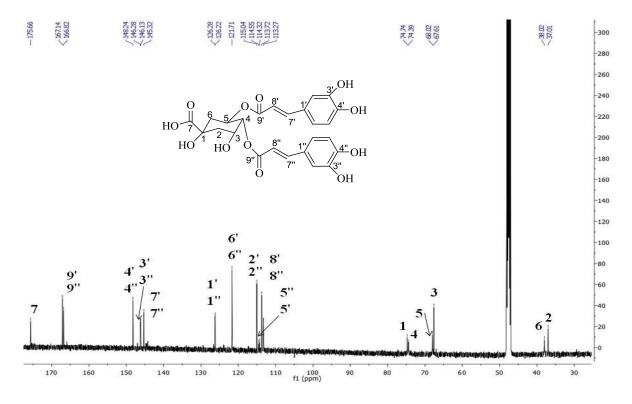

S13:	HSQC (500 MHz, CD ₃ OD) spectrum of compound 2 (expanded)	15
S14:	¹ H-NMR (500 MHz, CD ₃ OD) spectrum of compound 3	16
S15:	¹³ C NMR (500 MHz, CD ₃ OD) spectrum of compound 3	17
S16:	COSY (500 MHz, CD ₃ OD) spectrum of compound 3	18
S17:	HMBC (500 MHz, CD ₃ OD) spectrum of compound 3 (expanded)	19
S18:	HSQC (500 MHz, CD ₃ OD) spectrum of compound 3 (expanded)	20
S19:	Table 1. Carbon and proton data of the phenylpropanoid (1, 2) (at 500 MHz in CD ₃ OD, δ in ppm, <i>J</i> in Hz).	21
S20:	Table 2. Carbon and proton data of the flavonoid (3) (at 500 MHz in CD ₃ OD, δ in ppm, <i>J</i> in Hz).	23

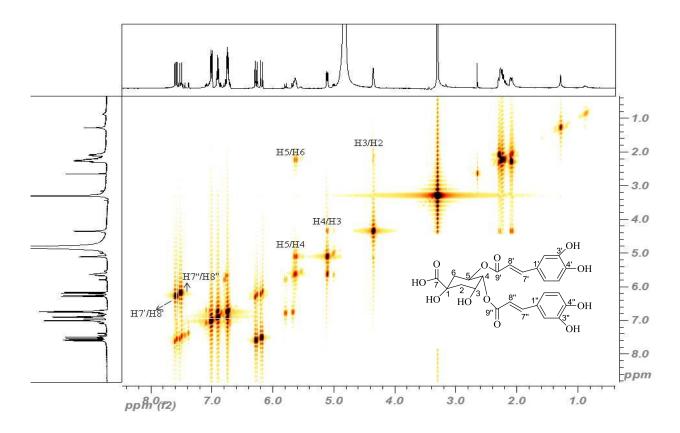

S1: ¹H-NMR (500 MHz, CD₃OD) spectrum of compound (1)

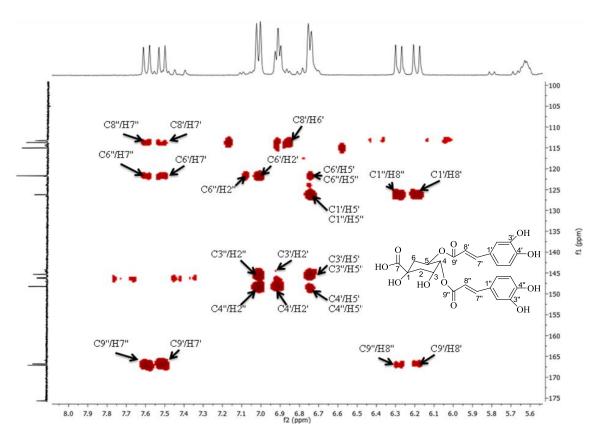

S2: ¹³C NMR (500 MHz, CD₃OD) spectrum of compound **1**

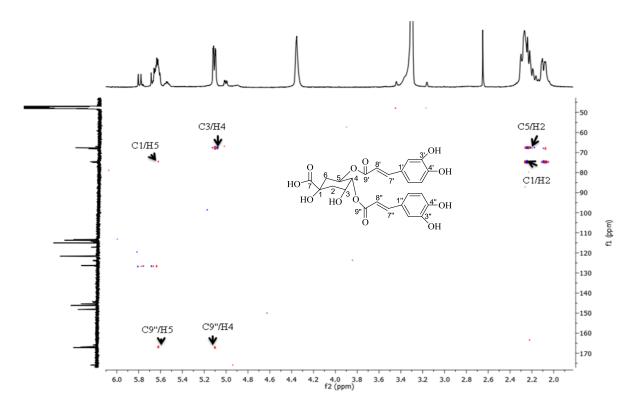

S3: COSY (500 MHz, CD₃OD) spectrum of compound **1**.

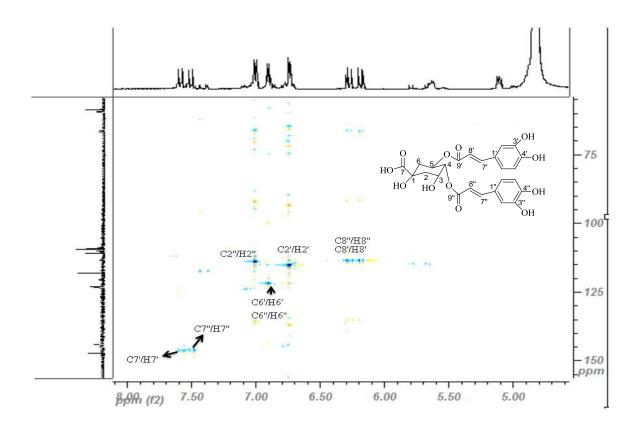

S4: HMBC (500 MHz, CD₃OD) spectrum of compound 1 (expanded)

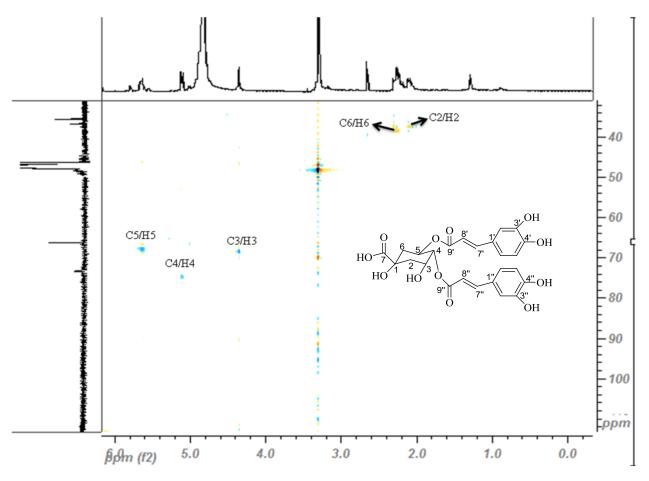

S5: HSQC (500 MHz, CD_3OD) spectrum of compound **1** (expanded)

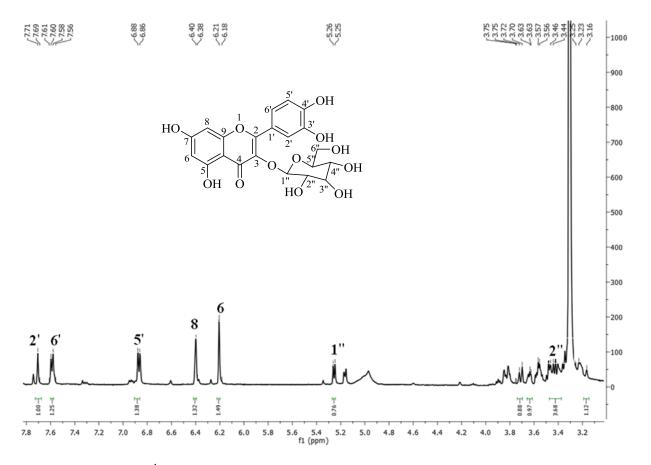

S6: HSQC (500 MHz, CD₃OD) spectrum of compound **1** (expanded)

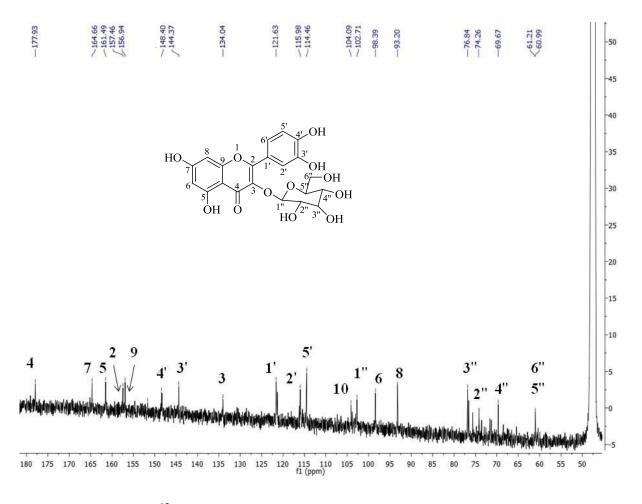

S7: ¹H-NMR (500 MHz, CD₃OD) spectrum of compound (2)

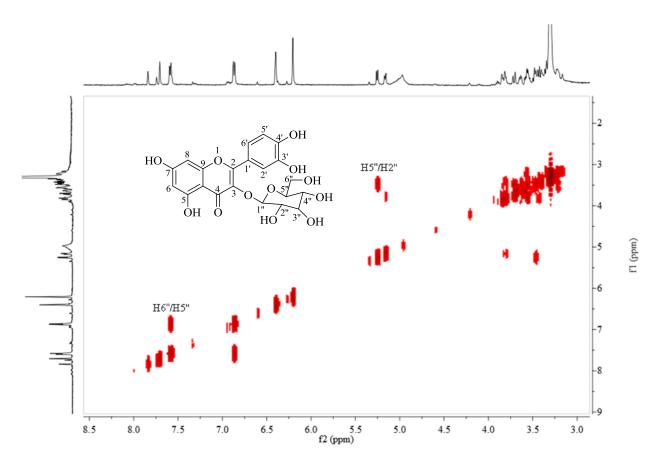

S8: ¹³C NMR (500 MHz, CD₃OD) spectrum of compound **2**

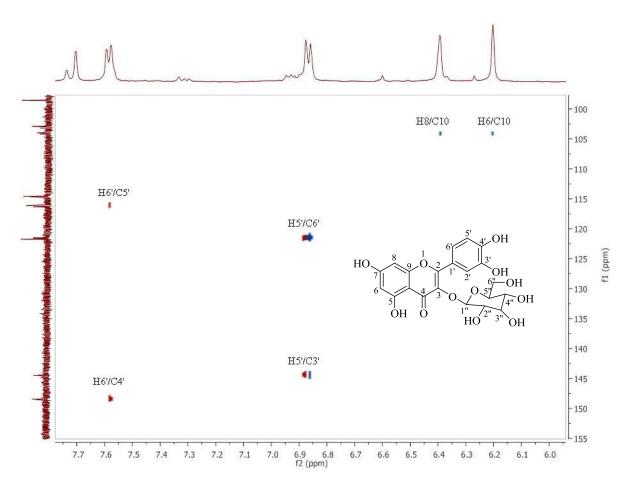

S9: COSY (500 MHz, CD₃OD) spectrum of compound **2**.

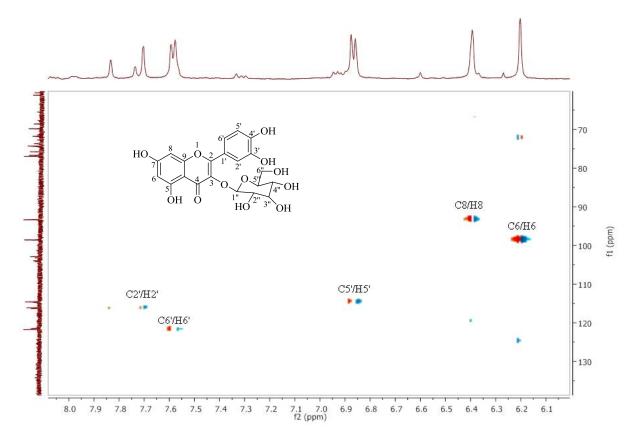

S10: HMBC (500 MHz, CD₃OD) spectrum of compound 2 (expanded)


S11: HMBC (500 MHz, CD₃OD) spectrum of compound 2 (expanded)


S12: HSQC (500 MHz, CD₃OD) spectrum of compound 2 (expanded)


S13: HSQC (500 MHz, CD_3OD) spectrum of compound **2** (expanded)


S14: ¹H-NMR (500 MHz, CD₃OD) spectrum of compound (**3**)


S15: ¹³C NMR (500 MHz, CD₃OD) spectrum of compound **3**

S16: COSY (500 MHz, CD₃OD) spectrum of compound 3

S17: HMBC (500 MHz, CD₃OD) spectrum of compound 3 (expanded)

S18: HSQC (500 MHz, CD₃OD) spectrum of compound **3** (expanded)

	(Compound 1	Compound 2	
Position	δ _C	δ_{H}	δ _C	δ_{H}
1	73.6		74.2	
2 _{ax} 2 _{eq}	37.1	2.32 (2H, d, <i>J</i> = 14.0 Hz ax) 2.20 (2H, m, H-6eq)	37	2.07 – 2.14 (2H, dd, <i>J</i> = 14.2, 3.5 Heq) 2.24 – 2.32 (2H, br.d, <i>J</i> = 14.2, Hax)
3	71.7	5.45 (m)	67.7	4.36 (1H, m)
		3.97 (1H, d, <i>J</i> = 9.0, 2.5 Hz)	74.4	5.11 (1H, dd, $J = 9.0, 2.0$ Hz)
5	71.7	5.37 (1H, t = 5.0 Hz)	68.1	5.64 (1H, m)
$egin{array}{c} 6_{ax} \ 6_{eq} \end{array}$	35.2	2.27 (2H, dd, <i>J</i> = 14.5, 7.0 Hz ax) 2.24 (m,Heq)	38.1	2.24 – 2.32 (2H, m,Heq) 2.18 – 2.27 (2H, m,Hax)
7	178.2		175.7	
1'	126.4		126.3	
2'	115.1	7.07 (br.s)	114.4	6.91 (1H, d, <i>J</i> = 2.0 Hz)
3'	145.9		146.1	
4'	148.8		148.2	
5'	114.8	6.78 (1H, d, <i>J</i> = 8.0 Hz)	115.1	6.75 (1H, d, <i>J</i> = 8.0 Hz)
6'	121.9	6.98 (1H, d, <i>J</i> = 8.0 Hz)	121.7	6.89 (2H, dd, <i>J</i> = 9.0, 1.5 Hz)
7'	145.9	7.57 (1H, d, <i>J</i> = 15.5 Hz)	146.3	7.51 (1H, d, <i>J</i> = 15.9 Hz)
8'	113.9	6.28 (1H, d, <i>J</i> = 15.5 Hz)	113.3	6.19 (1H, d, <i>J</i> = 15.9 Hz)
9'	166.8		168.8	
1"	126.1		126.5	
2"	115.3	7.07 (br.s)	115.3	7.07 (1H, d, <i>J</i> = 5.0 Hz)
3"	145.9		146.5	
4"	149.0		148.9	
5"	115.9	6.78 (1H, d, <i>J</i> = 8.0 Hz)	115	6.78 (1H, d, <i>J</i> = 8.0 Hz)
6"	121.5	6.96 (1H, d, <i>J</i> = 8.0 Hz)	121.5	6.97 (1H, d, <i>J</i> = 8.0 Hz)
7"	145.7	7.63 (1H, d, <i>J</i> = 15.5 Hz)	146.1	7.60 (1H, d, <i>J</i> = 15.9 Hz)
8"	114.4	6.39 (1H, d, <i>J</i> = 15.5 Hz)	115.4	6.28 (1H, d, <i>J</i> = 15.9 Hz)
9"	167.3		167.8	

Compound 3					
Position	δ_{C}	δ_{H}			
1	-				
2	157.1				
3	134.1				
4	178.1				
5	161.6				
6	98.5	6.21 (1H, d, <i>J</i> = 1.5 Hz)			
7	164.8				
8	93.3	6.40 (1H, d, <i>J</i> = 1.5 Hz)			
9	156.9				
10	104.2				
1'	121.4				
2'	115.8	7.71 (1H, d, <i>J</i> = 2.0 Hz)			
3'	144.5				
4'	148.4				
5'	114.4	6.3 (1H, d, <i>J</i> = 8.5 Hz)			
6'	121.8	7.70 (1H, dd, <i>J</i> = 8.5, 2.0 Hz)			
Glucose C-	-8				
1"	102.9	5.26 (1H, d, J = 7.5 Hz)			
2"	74.3	3.46 (3H, dd, <i>J</i> = 8.0, 10 Hz)			
3"	76.9				
4"	69.2				
5"	61.6				
6"	60.9				

S20 Table 2. ¹³C and ¹H NMR of compound **3** (500 MHz in CD₃OD, δ in ppm, *J* in Hz).