

Rec. Nat. Prod. 5:1 (2011) 56-59

records of natural products

Triterpenoids from Garcinia rigida

Berna Elya^{1,2*}, Hong Ping He¹, Soleh Kosela², Muhammad Hanafi³ and Xiao Jiang Hao¹

¹Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China

²Department of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia

³Indonesian Science Institute-LIPI, Indonesia

(Received January 30, 2010; Revised September 26, 2010; Accepted October 5, 2010)

Abstract: The leaves of *Garcinia rigida* afforded six triterpenoid compounds, friedelin (1), lanosta-8,25-en-3 β -ol (2), stigmasterol (3), lupeol (4), 3 β -hydroxy-20(29)-en-lupan-30-al (5) and 3 β -hydroxy-20(29)-en-lupan-30-ol (6). The structures of 1-6 were elucidated by IR, MS, NMR spectroscopies and comparison of their spectroscopic data with those reported in the literatures. Compound 6 showed toxicity to *Artemia salina* in brine shrimp lethality test (BLST) with LC₅₀ 27.72 µg/mL.

Keywords: Garcinia rigida; triterpenoid; brine shrimp lethality test (BLST).

1. Plant Source

Garcinia rigida belongs to Guttiferae family which commonly grows in Indonesia [1]. Garcinia rigida is a multy years plant (perennial) that has strong radixes. The plant lives in primary forest at lower plateu up until at a highest level of 700 meters aboves sea levels. This plant is called in Indonesia as a 'forest manggis' or 'manggis hutan', and grows commonly at Sumatera, Jawa and Kalimantan [1,2]. The shape of the leaves is lancet until ellips, and the shape of the fruits is ellips small. The bark of the fruit is red, and thiner than that of *G. mangostana* and the fruit has a good smell, likes a pineapple flavour [1,2].

The leaves of Garcinia rigida (Guttiferae) were collected in Bogor, Indonesia, in October 2002, identified by Dr. Irawati. A voucher specimen has been deposited in Pharmacy Department of University of Indonesia (No GR-1002). In previous papers, we reported the isolation of xanthones from the leaves *Garcinia rigida* [3,4] and a cytotoxic xanthone [5-6].

^{*}Corresponding author: E Mail: <u>elya64@yahoo.com</u> Phone: +6221-7270031; Fax: +6221-7863433

The article was published by Academy of Chemistry of Globe Publications www.acgpubs.org/RNP © Published 15/12/2010 EISSN: 1307-6167

2. Previous Studies

The family of Guttiferae were reported to be rich in natural chemical substances [5]. In previous paper, we reported the isolation of xanthones from the leaves *Garcinia rigida* [3,4] and a cytotoxic xanthone [6].

3. Present Study

The air dried leaves *G. rigida* (900 g) were soaked in hexane for a week and then soaked in acetone for a week. The hexane extract was concentrated to give a residue (10.0 g) that was subjected to column chromatography on Si gel with petroleum eter-ethyl acetate systems, affording 9 fractions. Fraction 1 to give **1** (55 mg), fraction 2 to obtain **2** (43 mg), fraction 3 to yield **4** (32 mg), fraction 6 to yield **6** (22 mg. Fraction 4 was subjected to column chromatography on Sephadex LH-20 (CHCl3-MeOH, 1-1) afforded compounds **3** (32 mg) and **5** (18 mg). These compounds were elucidated by IR, MS, NMR spectroscopies and comparison of their spectroscopic data with those reported in the literatures [7-8].

FTIR spectra were measured on Bio-Rad Merlin Spectrophotometer. MS were performed on an Autospec 3000 spectrometer at 70 eV. The NMR spectra were recorded on Bruker AM-400 and DRX-500 spectrometers.

The six triterpenoids were isolated i.e friedelin (1), lanosta-8,25-en-3 β -ol (2), stigmasterol (3), lupeol (4), 3 β -hydroxy-20(29)-en-lupan-30-al (5) and 3 β -hydroxy-20(29)-en-lupan-30-ol (6)

Figure 1. Isolated compounds from Garcinia rigida

The isolated compounds then were tested its toxicity towards *Artemia salina* in brine shrimp lethality test (BLST)

Brine Shrimp Lethality Assay [9]: Brine shrimp (*Artemia saline* Leach) eggs were place in a hatching tank containing sea water for 48 h. Each compound was made solution at concentration 200, 100, 40, 10, 5 μ g/mL in vial and allowed to evaporate. After evaporation, 5 ml of brine was added to each vial in triplicate to prepare a test consentration. Ten shrimp were added to each vial (30 shrimps per concentration). The number on survivors out of 30 shrimps per consentration was recorded.

Compound	Concentration	Morthality	LC ₅₀
	(µg/mL	(%)	
1	200	60,00	183.839
	100	30,00	
	40	23,33	
	10	13,33	
2	200	60,00	138.471
	100	40,00	
	40	33,33	
	10	23,33	
3	200	66,67	96.066
	100	46,67	
	40	33,33	
	10	16,67	
4	200	63,33	177.372
	100	26,67	
	40	23,33	
	10	13,33	
5	100	56,67	
	40	43,33	
	10	23,33	62.082
	1	3,33	
6	100	66.67	
	40	56,67	
	10	36,67	27.721
	1	10,00	

Table 1. The toxicity to Artemia salina in brine shrimp lethality test for compound 1-6

Acknowledgment

We thank the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences for the research grant.

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

References

- M.S.M. Sosef, L.T. Hong and S. Prawirohatmodjo (1998). PROSEA (Plant Resources of South East Asia) Timber Trees : Lesser-Known Timbers (3). Leyden, Backhuys Publishers, 246-249.
- [2] I. Rachman (2003). Sumber Koleksi Herbarium Bogoriense, Research Center for Biology, Indonesia Institute of Sciences, Bogor.
- [3] B. Elya, H. P. He, S. Kosela, M. Hanafi, D. Nurwidyosari, J. S. Wang and X. J. Hao (2005). Two New Xanthones from *Garcinia rigida*, *ACGC Chem. Res. Comm.* **18**,18-20.
- [4] B. Elya, H.P. He, S. Kosela, M. Hanafi, X. J. Hao (2001). Two New Xanthones from *Garcinia rigida* leaves, *Nat. Prod. Res.*, **20**, 788-791.
- [5] S. Kosela, L. H. Hu, S. C. Yip, T. Rachmatiah, T. Sukri, T. S. Daulay, G. K. Tan, J. J. Vital, K. Y. Sim (1999). Dulxanthone E: a pyranoxanthone from the leaves of *Garcinia dulcis*, *Phytochemistry*, **52**, 1375.
- [6] B. Elya, H. P. He, S. Kosela, M. Hanafi, X. J. Hao (2008). A new cytotoxic xanthone from *Garcinia rigida*, *Fitoterapia*, **79**, 182-184.
- [7] S. B. Mahato and A. P. Kundu (1994). ¹³C NMR Spectra of pentacyclic triterpenoids-A compilation and some salient features, *Phytochemistry*, **37**, 1517-1575
- [8] L. J. Goad and T. Akihisa. Analysis of Sterol (1997). Blackie Academic & Professional, London.
- [9] B. N. Meyer, N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, J. L. McLaughlin (1982). Brine shrimp-A General bioassay for active plnat constituents, *Planta Med.* 45, 31-33

© 2011 Reproduction is free for scientific studies