New Xanthone from *Millettia pachyloba* Drake

Zhi Na*, Qishi Song and Qingfei Fan

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, P. R. China

(Received October 30, 2018; Revised December 24, 2018; Accepted December 28, 2018)

Abstract: A new xanthone, 1,7-dihydroxy-2,3,5,6-tetramethoxyxanthone (1), together with eight known compounds including one xanthone (2) and seven isoflavones (3-9) has been isolated from the leaves of *Millettia pachyloba*. This is the first report on the isolation of xanthone from the genus *Millettia*. The structure of the compound 1 was elucidated on the basis of spectroscopic data interpretation, including 1D and 2D NMR and HREIMS. Compound 1 exhibited weak cytotoxicity against five human cancer cell lines, HL-60, SMMC-7721, A-549, MCF-7 and SW480.

Keywords: *Millettia pachyloba* Drake; Leguminosae; xanthone. © 2019 ACG Publications. All rights reserved.

1. Introduction

The vine stems of several *Millettia* species (Leguminosae), locally known in Chinese herbal medicines “*ji-xue-teng,*” are useful in promoting blood circulation and relieving stasis [1]. Plants of the genus *Millettia* are well known for elaborating prenylated flavones and isoflavones with annellated furan and pyran rings [2], some of which have shown significant biological activities [3-5]. *M. pachyloba* is a climb vine distributed in Guangdong, Guangxi, Hainan and Yunnan Province, P. R. China [6]. Previous investigation on *M. pachyloba*, isoflavone, pterocarpan and rotenone were the main compositions of the plant and exhibited cytotoxicity against KB cells [7-8]. In an earlier report, we described the isolation and elucidation of several flavones, isoflavones and pterocarpan from the vine stem of this plant [9]. During further investigation on active substances, we isolated a new xanthone, 1,7-dihydroxy-2,3,5,6-tetramethoxyxanthone, along with eight known compounds from the leaves of *M. pachyloba*. To the best of our knowledge, this is the first report on the isolation of xanthone from the genus *Millettia*. Herein, we describe the isolation, structural determination and cytotoxicity potential of the new metabolite.

2. Materials and Methods

2.1. General

UV spectra were measured with a Shimadzu UV-2401 PC spectrophotometer. IR spectra were recorded on a Bruker Tensor-27 infrared spectrophotometer with KBr pellets. All NMR experiments were performed on a Bruker AM-400 and DRX-500 instruments with TMS as the internal standard. The chemical shifts were given in δ (ppm) scale with reference to the solvent signal. HREIMS spectra were recorded on a Waters AutoSpec Premier P776 instrument. Column chromatography was performed using

* Corresponding author: E-mail: nazhi@xtbg.org.cn; Phone:086-691-8713061
silica gel (200-300 mesh, Qingdao Haiyang Chemical Co., Ltd, Qingdao, China), reversed-phase C18 silica gel (40-63 μm, Merck, Darmstadt, Germany) and Sephadex LH-20 (GE healthcare, Sweden). Fractions monitored by TLC, and the spots were visualized by heating silica gel plates sprayed with 10% H2SO4 in ethanol.

2.2. Plant Material

The leaves of *M. pachyloba* were collected from Xishuangbanna, Yunnan Province, P. R. China in August 2016, and authenticated by Dr. Yun-Hong Tan, herbarium of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. A voucher specimen (No. 20160801) was deposited in the ethnomedicine research group of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences.

2.3. Extraction and Isolation

The sun dried and powdered leaves of *M. pachyloba* (3.0 kg) were extracted three times by maceration with 95% ethanol at room temperature, to afford crude extract (265 g) after evaporation under vacuum. The crude extract was suspended in water and successively extracted with petroleum ether, chloroform and ethyl acetate, respectively. The petroleum ether extract (75 g) and chloroform extract (86 g) showed similar thin-layer chromatography; hence they were combined and subjected to silica gel column chromatography (CC) with petroleum ether–ethyl acetate step-gradient elution (v/v 9:1→3:7) to yield compound 3 (75 mg) and six fractions (Fr1–Fr6). The Fr2 (7.8 g) was chromatographed on silica gel column using a gradient solvent petroleum ether–ethyl acetate (4:1, 3:1, 2:1, 6:4) to give four subfractions Fr2-1–Fr2-4. The Fr2-1 was subsequently purified by C18 CC eluted with MeOH–H2O (70→90%) to give compounds 1 (21 mg) and 2 (32 mg). The Fr2-3 was further purified by CC on Sephadex LH-20 eluted with MeOH to afford compound 8 (18 mg). The Fr3 (9.5 g) was purified over columns of silica gel eluted with CHCl3–MeOH (40: 1, 20:1, 10: 1) to afford compound 5 (35 mg) and three subfractions Fr3-1–Fr3-3. The Fr3-1 was subjected to C18 CC eluted with MeOH–H2O (60→90%) to obtain compound 4 (30 mg). The Fr3-2 was followed by Sephadex LH-20 CC eluted with MeOH to yield compound 9 (32 mg). The Fr4 (4.7 g) was further separated by C18 CC eluted with MeOH–H2O (60→90%) to afford compounds 6 (36 mg) and 7 (24 mg).
2.4. Spectroscopic Data

1,7-dihydroxy-2,3,5,6-tetramethoxyxanthone (1): Yellow amorphous powder, UV (MeOH): \(\lambda_{\text{max}} \) (log \(e \)): 365 (3.50), 312 (3.89), 260 (4.18), 238 (4.10) nm; IR (KBr): \(\nu_{\text{max}} \): 3380, 2960, 1658, 1567, 1478 cm\(^{-1}\). EIMS \(m/z \) (rel. int.): 348 [M]\(^+\) (90), 333(100), 305(25), 282(22), 268(48), 132(21). HREIMS: \(m/z \) 348.0841 (calc. for C\(_{17}H\(_{10}\)O\(_8\), 348.0845). \(^1\)H and \(^{13}\)C NMR (CDCl\(_3\), 500/125 MHz) see Table 1.

![Figure 2. Key HMBC (H→C) correlations of compound 1.](image)

3. Results and Discussion

3.1. Structure Elucidation

Compound 1 was obtained as yellow amorphous powder. The HREIMS exhibited a molecular ion at \(m/z \) 348.0841 (calcld. 348.0845), suggesting the molecular formula C\(_{17}H\(_{10}\)O\(_8\). The IR spectrum showed the presence of hydroxyl group at 3380 cm\(^{-1}\) and a conjugated carbonyl at 1658 cm\(^{-1}\).

<table>
<thead>
<tr>
<th>Position</th>
<th>(^1)H NMR ((\delta_{\text{H}}))</th>
<th>(^{13})C NMR ((\delta_{\text{C}}))</th>
<th>(^1)H NMR ((\delta_{\text{H}}))</th>
<th>(^{13})C NMR ((\delta_{\text{C}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.82 (1H, s)</td>
<td>12.88 (1H, s)</td>
<td>12.82 (1H, s)</td>
<td>12.88 (1H, s)</td>
</tr>
<tr>
<td>7-0H</td>
<td>5.78 (1H, s)</td>
<td>5.76 (1H, s)</td>
<td>5.78 (1H, s)</td>
<td>5.76 (1H, s)</td>
</tr>
<tr>
<td>2-OCH(_3)</td>
<td>3.92 (3H, s)</td>
<td>3.98 (3H, s)</td>
<td>3.98 (3H, s)</td>
<td>3.92 (3H, s)</td>
</tr>
<tr>
<td>3-OCH(_3)</td>
<td>3.98 (3H, s)</td>
<td>3.98 (3H, s)</td>
<td>3.98 (3H, s)</td>
<td>3.98 (3H, s)</td>
</tr>
<tr>
<td>5-OCH(_3)</td>
<td>4.06 (3H, s)</td>
<td>4.06 (3H, s)</td>
<td>4.06 (3H, s)</td>
<td>4.06 (3H, s)</td>
</tr>
<tr>
<td>6-OCH(_3)</td>
<td>4.17 (3H, s)</td>
<td>4.17 (3H, s)</td>
<td>4.17 (3H, s)</td>
<td>4.17 (3H, s)</td>
</tr>
</tbody>
</table>

*500 MHz for \(^1\)H NMR and 125 MHz for \(^{13}\)C NMR in CDCl\(_3\), \(\delta \) in ppm, \(J \) in Hz.

The UV spectrum had maxima absorptions at 238, 260, 312 and 365 nm. The \(^1\)H NMR spectrum of compound 1 (Table 1) showed the presence a chelated hydroxyl at \(\delta_{\text{H}} \) 12.82, four methoxyl groups at \(\delta_{\text{H}} \) 3.92, 3.98, 4.06 and 4.17, two singlet aromatic protons at \(\delta_{\text{H}} \) 6.54 (1H, s) and 7.50 (1H, s), and an additional non-chelated hydroxyl group at \(\delta_{\text{H}} \) 5.78. The \(^{13}\)C NMR spectrum showed 17 carbon resonances assigned to a carbonyl group (\(\delta_{\text{C}} \) 180.4), ten quaternary aromatic carbons and two aromatic CH groups (\(\delta_{\text{C}} \) 90.6 and 103.6); and four methoxyl groups (\(\delta_{\text{C}} \) 56.4, 61.0, 61.5 and 62.0). The \(^1\)H and \(^{13}\)C NMR data
suggested a xanthone-like structure [10]. In fact, the 1H NMR spectral properties of 1 was very similar to those of 1,7-dihydroxy-3,5,6-trimethoxyxanthone (2) except for the presence of an additional methoxy resonance and absence of a singlet proton signal in 1. As a result, 1 should have a dihydroxytetramethoxyxanthone skeleton. To unequivocally corroborate the substitution pattern of 1, the 1H- and 13C-NMR spectra of the known compound 2 were also listed in Table 1. The additional methoxyl group had to be at the position C-2, C-4 or C-8. The most deshielded aromatic proton ($\delta_{H} 7.50$) was assigned to C-8 as it showed a HMBC 3J correlation (Figure 2) to the carbonyl carbon. Another aromatic proton at $\delta_{H} 6.54$ showed four HMBC correlations (3J: C-3, C-4a; 3J: C-2, C-9a), which confirmed C-4 was unsubstituted position. The fourth methoxyl hence had to attach to C-2. This conclusion was further confirmed by a HMBC 3J correlation between the methoxyl protons (δ_{H} 3.92) and C-2 (δ_{C} 131.8). Based on the above mentioned evidence, the structure of 1 was determined as 1,7-dihydroxy-2,3,5,6-tetramethoxyxanthone.

Additionally, one known xanthone and seven known isoflavones were also isolated and identified as 1,7-dihydroxy-3,5,6-trimethoxyxanthone (2) [11], 6-methoxycalponogin isoflavone A (3) [12], durallone (4) [13], ichthynone (5) [14], millesianin C (6) [12], millesianin D (7) [15], genistein (8) [16] and afromosin (9) [17], respectively. The structures of the known compounds were characterized on the basis of spectral data and comparison with those reported in the literature.

The genus Millettia (Leguminosae) is a rich source of flavonoids [2]. However, this is the first isolation of xanthones (1-2) from the genus Millettia. Compounds 1 and 2 have not been previously isolated from any species of Millettia, while 2 has ever been reported to occur in Polygala nyikensis (Polygalaceae) [11]. Only a few xanthones and anthraquinones have been obtained from several other species of Leguminosae, such as Caesalpinia sappan [18], Cassia fistula [19], Cassia sieberiana [20] Cyclopia subternata [21], Dalbergia sissoides [22], Hedysarum denticulatum [23]. In conclusion, flavonoids are important chemical characteristics of the Millettia species. Regarding xanthones, they are rarely found in genus Millettia. This phytochemical investigation of M. pachyloba has shown that its chemistry differs from other species of Millettia. This study acts as foundation for further chemotaxonomic studies on the genus.

3.2. Cytotoxicity

Cytotoxicity of compound 1 was evaluated against human leukemia (HL-60), hepatoma (SMMC-7721), lung carcinoma (A549), breast adenocarcinoma (MCF-7) and colon adenocarcinoma (SW480) cell lines by the MTT assay [24] with cis-platinum (MW 300) and taxol as positive reference substance. Compound 1 showed weak cytotoxicity against five cancer cell lines with IC$_{50}$ values over 40 μM (Table S1 in supporting information).

Acknowledgments

This work was financially supported by the CAS 135 program (XTBG-F02).

Supporting Information

ORCID

Zhi Qi Song: 0000-0002-9034-2164
Qings Fan: 0000-0002-1571-1484
Qingfei Fan: 0000-0001-7948-7835

References

