Chemical Compounds from the Twigs and Leaves of

Caesalpinia cucullata Roxb

Xuesong Liang, Dewen Bi, Fengqiu Li and Liqin Wang*

Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China

(Received December 05, 2018; Revised April 07, 2019; Accepted Month April 08, 2019)

Abstract: A new stilbene dimer, caesalstilbene A (1), along with twelve known compounds were isolated from the twigs and leaves of Caesalpinia cucullata Roxb by means of various chromatographic techniques. Their structures were identified on the basis of NMR spectral analysis and comparing their spectral data with those reported in the literatures. The absolute configuration of 1 was assigned by the comparison of the experimental and calculated electronic circular dichroism spectra. Compound 1 was evaluated for their cytotoxicity on HL-60, SMMC-7721, A-549, MCF-7 and SW-480 human cancer cell lines, but it was inactive. This is the first report of chemical investigation on Caesalpinia cucullata.

Keywords: Caesalpinia cucullata; Leguminaceae; stilbene dimer; caesalstilbene A. © 2019 ACG Publications. All rights reserved.

1. Introduction

Caesalpinia cucullata Roxb, belonging to the family Leguminosae, is distributed in south of Yunnan province of China, India, Nepal, Sikkim [1]. There are 17 Caesalpinia species widespread in China, and 14 species have long been used in Chinese traditional medicine to reduce swelling and alleviate pain, to treat rheumatism and inflammatory [2]. Because of their characteristic cassane diterpenoids and homoisoflavonoids, whose structures and bioactivities are diverse [2,3,4], the plants of Caesalpinia have drawn wide attention. As our continuous investigation on Caesalpinia plants [5,6], one new stilbene dimer, caesalstilbene A (1), along with twelve known compounds were isolated from the twigs and leaves of C. cucullata. All these compounds were isolated from C. cucullata for the first time. Here, we described the isolation and structural elucidation of these compounds.

2. Materials and Methods

2.1. Instrumentation and Reagents

NMR spectra were acquired on Bruker DRX-500 spectrometer. MS data were obtained using a Bruker microTOF spectrometers. Fractions were monitored by TLC on silica gel plates (GF254, Qingdao Puke separation material Co., Ltd., Qingdao, China). Column chromatography (CC) was performed on silica gel (100-200 mesh or 200-300 mesh; Qingdao Puke separation material Co., Ltd., Qingdao, China), Sephadex LH-20 (GE Healthcare) and MC1 gel (75–150 mm, Mitsubishi Chemical Corporation, Tokyo, Japan). All solvents used in column chromatography were of industrial grade and used after distillation under vacuum.

* Corresponding author: E-mail: lqwang@ynnu.edu.cn; Phone/Fax: 86-871-65941088
2.2. Plant Material

The twigs and leaves of *Caesalpinia coccifera* were collected from Xishuangbanna, Yunnan, China in November 2015, and identified by Chunfen Xiao (Xishuangbanna Botanical Garden, Chinese Academy of Sciences) to be the same as the voucher specimen (HITBC 017509) deposited at Xishuangbanna Botanical Garden, Chinese Academy of Sciences.

2.3. Extraction

The powdered twigs and leaves (11.5 kg) of *C. coccifera* were extracted with EtOH at room temperature, which afforded a dark residue after evaporation under reduced pressure. The residue was dissolved in H₂O and extracted by ethyl acetate (EtOAc). The EtOAc extract (360 g) was subjected to CC (SiO₂, 100-200 mesh; petroleum ether/ EtOAc 10:1, 8:1, 6:1, 4:1, 2:1, 1:1, 0:1), to gain ten fractions (Fr. T₁-T₁₀), and then it was eluted with CH₃OH to afford fraction T₁₁.

Fr. T₁ (6.9 g) was subjected to CC (SiO₂, petroleum ether/EtOAc 5:1:1) to gain five subfractions (T₃₅-T₅₀). T₅₀ (642.9 mg) was subjected to CC (SiO₂, petroleum ether/ EtOAc 5:1, CHCl₃/CH₃COCH₃ 20:1; Sephadex LH-20, CHCl₃/MeOH 1:1) to provide compound 8 (4.2 mg); T₉ₐ (538.7 mg) was subjected to CC (SiO₂, CHCl₃/CH₃COCH₃ 40:1; Sephadex LH-20, CHCl₃/MeOH 1:1) to provide compound 3 (45.8 mg).

Fr. T₃ (3.6 g) was subjected to CC (SiO₂, petroleum ether/EtOAc 5:1) to gain three subfractions (T₄ₐ-T₄₆). T₄₆ (529 mg) was subjected to CC (SiO₂, CHCl₃/CH₃COCH₃ 20:1, petroleum ether/ EtOAc 5:1) to provide compound 4 (21 mg).

Fr. T₅ (12.0 g) was subjected to CC (SiO₂, petroleum ether/CH₃COCH₃ 2:1:1-1:1) to obtain four subfractions (T₆ₐ-T₈₀). T₈₀ (2.9 g) was subjected to CC (SiO₂, petroleum ether/CH₃COCH₃ 2:1; CHCl₃/MeOH 15:1; Sephadex LH-20, CHCl₃/MeOH 1:1) to provide compound 9 (2 mg). T₈₀ (1.6 g) was subjected to CC (SiO₂, CHCl₃/CH₃COCH₃ 8:1; Sephadex LH-20, MeOH) to get compound 6 (4.1 mg).

Fr. T₇ (9.3 g) was subjected to CC (SiO₂, petroleum ether/CH₃COCH₃ 1.5:1) to gain three subfractions (T₉ₐ-T₉₉). T₉₉ (210 mg) was subjected to CC (Sephadex LH-20, CHCl₃/MeOH 1:1; SiO₂, CHCl₃/MeOH 15:1) to provide compound 7 (6.5 mg).

Fr. T₉ (13.4 g) was subjected to CC (SiO₂, petroleum ether/CH₃COCH₃ 3:2) to obtain four subfractions (T₉₆-T₉₀). T₉₀ (3.5 g) was subjected to CC (SiO₂, CHCl₃/MeOH 20:1; CHCl₃/CH₃COCH₃ 8:1-6:1) to give compound 12 (20 mg). T₉₀ (3.2 g) was subjected to CC (SiO₂, CHCl₃/MeOH 20:1-8:1; Sephadex LH-20, MeOH; SiO₂, petroleum ether/EtOAc 2:1) to get compounds 11 (16.3 mg), 2 (120 mg) and 5 (9.7 mg).

Fr. T₃ (10.9 g) was subjected to CC (SiO₂, petroleum ether/CH₃COCH₃ 3:2) to obtain five subfractions (T₉₆-T₉₀). T₉₀ (1.9 g) was subjected to CC (SiO₂, CHCl₃/MeOH 10:1; Sephadex LH-20, CHCl₃/MeOH 1:1) to get compounds 10 (9 mg) and 13 (7 mg).

Fr. T₁₀ (13.8 g) was subjected to CC (SiO₂, petroleum ether/ CH₃COCH₃ 1:1) to obtain four subfractions (T₁₀₆-T₁₀₉₀). T₁₀₆ (2.3 g) was subjected to CC (SiO₂, petroleum ether/CH₃COCH₃ 1:1; CHCl₃/MeOH 6:1-4:1) to get compound 1 (14 mg).

Caesalstilbene A (1): colorless amorphous solid, UV(MeOH): λmax (log ε) = 202 (2.96), 282 (2.02) nm; [α]D₂⁰ = -25.89 (c 0.130, CH₃OH); Positive ESI-MS: m/z 471 [M+H]⁺, Positive HRESI-MS: 471.1446 [M+H]⁺ (caled for C₈₂H₇₂O₇ , 471.1438). ¹H-NMR and ¹³C-NMR data, see Table 1.

3. Results and Discussion

Compound 1 was isolated as brown amorphous solid, with the molecular formula C₈₂H₇₂O₇ (18 degrees of unsaturation), as determined by HRESIMS at m/z 471.1446 [M+H]⁺. The ¹H NMR and ¹³C NMR spectra showed the presence of one set of ortho-coupled aromatic protons derived from a 4-hydroxyphenyl group, one set of aromatic protons coupled in an AX₂ system due to a 3,5-dihydroxyphenyl group, one set of aromatic protons coupled in an AX system due to a 2,3,5-substituted phenyl group, two singlet aromatic protons attributed to a 2,4,5-substituted phenyl group, and four aliphatic methines (H-7a, H-8a, H-7b and H-8b). This evidence, together with the limitation imposed by eighteen unsaturations, indicated the existence of two ring systems and four benzene rings.
A new stilbene dimer *Caesalpinia coccullata* Roxb

in 1. These observations suggested that compound 1 was a stilbene dimer with a planar structure similar to that of cararosinol C [7], except that the location of the hydroxyl groups on ring B1 and B2 were not as same as that of cararosinol C. Ring B1 and ring B2 were 3,5-dihydroxy and 2,4,5-substituted phenyl groups respectively, which was verified by the HMBC correlations of H-2b(6b)/C-7b, H-11b/C-7a, H-2a(6a)/C-7a, H-14b/C-8b, H-7b/C-11a (Figure 1). In its ROESY spectrum, the correlations between H-7b/H-8a, H-7b/H-14b, H-7a/H-8b, and H-7a/H-11b indicated that the hydroxyphenyl groups at C-7a and C-7b were trans-oriented to each other, while they were cis-oriented towards H-8a and H-8b respectively. Therefore, the relative stereostructure of compound 1 was established as shown in Figure 1 (1a or 1b).

![Figure 1. The structures of compounds 1a and 1b, the key HMBC and ROESY correlations of 1a](image)

![Figure 2. Comparison of experimental ECD spectra of 1 (red solid line) in MeOH and the calculated ECD spectra of 1a (black solid line) and 1b (black dotted line) at the B3LYP/6-311+G(d, p) level](image)

The absolute configuration of 1 was determined by comparison of the experimentally obtained-, and simulated, electronic circular dichroism (ECD) spectra. The ECD spectra of 1a better matched the experimental ECD spectra of 1 (Figure 2), suggest the (7aR,8aR,8bR,8aS) absolute configuration for 1. Hence, the structure of 1 was elucidated to be 1a, and named as caesalstilbene A.

Compound 2-13 were identified to be *trans*-resveratrol (2) [8], 2',4'-dihydroxy-4-methoxycalcone (3) [9], isoliquiritigenin (4) [10], butein (5) [11], 3,2',4'-trihydroxy-4-methoxycalcone (6) [12],

2',4',4-trihydroxy-3'-methoxychalcone (kukulkanin B) (7) [13], 7-hydroxy-4'-methoxyflavonone (8) [10], naringenin (9) [14], butin (10) [15], aromadendrin (11) [16], apigenin (12) [8], and luteolin (13) [8] (Figure 3), by their 1D-NMR analysis and comparing their spectral data with those reported in the literatures.

The cassane diterpenoids and homoisoflavonoids are the characteristic components of Caesalpinia plants [17]. However, our present study showed that the cassane diterpenoids were not found in Mezoneuron sub-genus [5,6]. This is the major difference between Caesalpinia sub-genus and Mezoneuron sub-genus. Thus the cassane diterpenoids might be a unique chemotaxonomic marker for Caesalpinia sub-genus. Depth studies need to be carried out.

Using the MTS method reported in the literature [5], compound 1 was tested for their cytotoxicity against the HL-60 (acute leukemia), SMMC-7721 (liver cancer), A-549 (lung cancer), MCF-7 (mammary cancer) and SW-480 (colon cancer) human tumor cell lines, but no activity was noted with IC_{50} values more than 40 μM.

Table 1. ¹H NMR (ppm, J in Hz in parentheses, recorded at 500 MHz) and ¹³C NMR spectroscopic data (recorded at 125 MHz) of compound 1 (in CD₃COCD₃)

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_H</th>
<th>Position</th>
<th>δ_H</th>
<th>Position</th>
<th>δ_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>138.8</td>
<td>1b</td>
<td>138.1</td>
<td>2a/6a</td>
<td>6.96 (d, 8.5)</td>
</tr>
<tr>
<td>4a</td>
<td>4.34 (s)</td>
<td>7a</td>
<td>57.8 (s)</td>
<td>8a</td>
<td>3.85 (d, 5.5)</td>
</tr>
<tr>
<td>10a</td>
<td>122.7</td>
<td>11a</td>
<td>156.5</td>
<td>12a</td>
<td>6.17 (d, 1.7)</td>
</tr>
<tr>
<td>14a</td>
<td>6.54 (d, 1.7)</td>
<td>14b</td>
<td>103.2</td>
<td>14b</td>
<td>7.00 (s)</td>
</tr>
</tbody>
</table>

Figure 3. The structures of compounds 2-13

Acknowledgments

This research was funded by the National Natural Science Foundation of China (No. 31460085).
A new stilbene dimer *Caesalpinia cuctullata* Roxb

Supporting Information

ORCID

Xuesong Liang: 0000-0001-8036-7037
Dewen Bi: 0000-0003-4224-8947
Fengqiu Li: 0000-0002-0676-4226
Liqin Wang: 0000-0002-2440-0186

References

