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Abstract: A new spectinabilin derivative (1) and a new hexadienamide derivative (3), together with (-)-

spectinabilin (2) and sarmentosamide (4), were isolated from Streptomyces sp. S012. Their structures were 

elucidated on the basis of spectroscopic analysis, including 1H, 13C NMR, 1H-1H COSY, HSQC, HMBC, 

NOESY and HRESIMS. Their antibacterial activity was also evaluated in this study. 
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1. Introduction 

Streptomyces sp. S012 was isolated from the rhizosphere soil of Nanjing Zhongshan Botanical 

Garden. Previously, a series of streptovaricins with diverse bioactivities were isolated from this strain 

[1, 2]. Herein, a new spectinabilin derivative (1) and a new hexadienamide (3) together with (-)-

spectinabilin (2) and sarmentosamide (4) are reported including their isolation, structural elucidation 

and antimicrobial activities. Compounds 1 and 2 are unusual nitroaryl-substituted polyene polyketides, 

while 3 and 4 are rare hexadienamide derivatives [3, 4]. Prior to this study, only a few spectinabilin 

and hexadienamide analogues have been reported, such as spectinabilin [2, 5], aureothin [6, 7], 

SNF4435 C and D [8-10], arabilin [11], sarmentosamide [3], erythrococcamides A-E [12] and N-

isobutyl-6-(2-thienyl)-2E,4E-hexadienamide [13]. 

 

2. Materials and Methods 

2.1. General Experimental Procedure 

Optical rotation was measured on a Perkin-Elmer 341 polarimeter (Anton Paar GmbH, Graz, 

Austria). UV spectra were recorded on a UV-1800 UV spectrophotometer (Shimadzu, Kyoto, Japan). 
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NMR spectra were recorded on a Bruker DRX-600 MHz and DRX-400 MHz NMR spectrometer 

(Bruker Daltonics Inc., Billerica,Massachusetts) with tetramethylsilane (TMS) as an internal standard. 

HRESIMS was measured on an LTQ-Orbitrap XL. Sephadex LH-20 was obtained from the GE 

Amersham Biosciences (Pis-cataway, New Jersey). Reversed-phase C-18 (RP-18) silica gel for 

column chromatography (CC) was obtained from Merck (Darmstadt, Germany). HPLC separations 

were mainly performed on Waters 1525 Binary HPLC Pump equipped with Waters 996 Photodiode 

Array Detector using Agilent Eclipse XDB-C18 column (5 m, 9.4 * 250 mm). Silica gel GF254 for 

thin-layer chromatography (TLC) was purchased from Qingdao Marine Chemical Ltd (Qingdao, 

China). 

 
2.2. Fermentation and Isolation 

 
The Streptomyces sp. S012 strain was cultured for 12 d on ISP3 agar plates (40 L) at 28 oC. At 

the end of fermentation, the agar cultures were diced and extracted three times with EtOAc-MeOH 

(4:1, v/v) at room temperature. The organic solvents were evaporated and the extract was partitioned 

between ddH2O and EtOAc (1:1, v/v). The EtOAc extract was further partitioned between 95% 

aqueous MeOH and petroleum ether (PE) to afford MeOH extract (9.0 g). The MeOH extract was 

subjected to CC over Sephadex LH-20 eluted with MeOH to obtain Fr.1 and Fr.2 (8.0 g). Fr.2 was 

further fractionated by MPLC (145 g RP-18 silica gel; 30%, 50%, 70% MeOH and 100% MeOH, 1 L 

each, respectively) to afford Fr.2a–2d. Fr.2a was chromatographed over Sephadex LH-20 (120 g; 

MeOH) to afford Fr. 2a1-2a4. Fr.2a4 was subjected to reversed-phase HPLC (Waters 1525 

instrument; Agilent Eclipse XDB-C18 column ID: 5 m, 9.4 * 250 mm) eluted with 20% CH3CN (4 

mL/min, UV 254 nm) to obtain 4 (tR 13.0 min, 8.0 mg). 

Fr.2c was fractionated by CC over Sephadex LH-20 and MPLC over RP-18 silica gel to afford 

Fr.2c1-Fr.2c7. Fr.2c2 was further purified by HPLC (Waters 1525 instrument; column ID: 9.4 * 250 

mm, 5 m) eluted with 55% and 70% CH3CN (4.0 mL/min, UV 254 nm) to obtain 3 (tR 22 min, 7.2 

mg) and 1 (tR 10.6 min, 5.2 mg, UV 254 nm), respectively. By the similar procedure, 2 (tR 19.5 min 

5.4 mg, UV 254 nm) was purified from Fr.2d by HPLC eluted with 60% CH3CN. 

Compound 1: Pale yellow oil; [α]25
D  -239.50 (c 0.1, MeOH); 1H and 13C NMR data see Table 1 

and Table S1. UV/Vis (log): λmax 212 (4.10), 267 (3.92), 296 (3.61) nm; HRESIMS (m/z): 955.4301 

[2M + H]+ (Calcd. for C56H63N2O12
+, 955.4376). 

(-)-Spectinabilin (2): Pale yellow oil; [α]25
D  -40 (c 0.1, CHCl3); 1H and 13C NMR data see Table 1 

and Table S2. UV/Vis (log): λmax 258 (3.36) nm; HRESIMS (m/z): 478.2168 [M + H]+ (Calcd. for 

C28H32NO6
+, 478.2222). 

Compound 3: Pale yellow oil; [α]25
D  -66.7 (c 0.1, MeOH); 1H and 13C NMR data  see Table 2 and 

Table S3. UV/Vis (log): λmax 216 (3.44), 259 (3.50), 296 (2.91) nm; HRESIMS (m/z): 238.0702 [M + 

H]+ (Calcd. for C13H20NO3
+, 238.1438). 

Sarmentosamide (4): Pale yellow oil; [α]25
D  -174.5 (c 0.2, MeOH); 1H and 13C NMR data see 

Table 2 and Table S4. UV/Vis (log): λmax 211 (4.36), 224 (4.39), 264 (3.93) nm; ESIMS (m/z): 223.4 

[M + H]+ and 245.5 [M + Na]+. 

 

2.3. Biological Assays 
 

The antimicrobial activities of compounds 1-4 were tested with the paper disc diffusion assay 

against four plant pathogenic fungi (Magnaporthe oryzae, Phomopsis asparagi, Colletotrichum 

truncatum, Colletotrichum gloeosporioides), three Gram-positive bacteria (Mycobacterium smegmatis 

mc2 155, Bacillus subtilis PCI219 and Staphylococcus aureus ATCC 25923), and three Gram-negative 

bacteria (Proteusbacillus vulgaris CPCC 160013, Escherichia coli CICC 10003 and Salmonella 

enterica serovar Typhimurium UK-1 𝜒8956). Amphotericin B and ampicillin were used as positive 

controls for fungi and bacteria, respectively. The diameters of the inhibition zones were measured to 

describe the activity after 24 h of incubation at 37 oC. 
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Figure 1. The chemical structures for compounds 1–4 

 

3.  Results and Discussion 

 
3.1. Structure Elucidation 

 
Compounds 1 and 2 were obtained as pale yellow oil. The molecular formulas of both 1 and 2 

were determined to be C28H31NO6 with 14 degrees of unsaturation on the basis of high-resolution 

ESIMS (m/z 955.4301 [2M + H]+ and 478.2168 [M + H]+, respectively). The 1H, 13C and HSQC NMR 

data of both 1 and 2 (Table 1, Tables S1 and S2) revealed 28 carbon signals for five methyls, a 

methoxyl group, two methylenes, nine methines and eleven quaternary carbons (including a carbonyl 

group). The NMR data of 2 were almost identical to those of spectinabilin (Table S5) [5, 11, 14]. 

Further analyzing the 1H-1H COSY and HMBC correlations (Table S2) confirmed the structure of 2 to 

be Spectinabilin (Figure S17). Spectinabilin was initially discovered by Rinehart group in 1976 [5] 

with [α]D +60 (c 5.0, CHCl3) and later by Imoto group in 2010 [11] with [α]26
D +60.6 (c 5.0, CHCl3), 

while our current work reported the isolation of spectinabilin with similar spectroscopic data, but 

different optical rotation at [α]25
D  -40 (c 0.1, CHCl3), suggesting 2 to be (-)-spectinabilin. 

The HMBC and 1H-1H COSY correlations proved that compound 1 also has a 2-methoxy-3,5-

dimethyl--pyrone moiety (C(1) to C(5)), a 1,3-disubstituted furan ring (C(6)-C(8a)) and a p-

nitrophenyl group (C(16) to C(21)), similar to that of spectinabilin (Figure 1). The presence of a 1,3,5-

trimethylcyclohexa-2,4-diene moiety (C(10)-C(15)) was determined on basis of the HMBC 

correlations from H-C(10a) to C(10), C(11) and C(15), from H-C(12a) to C(11), C(12) and C(13), and 

from H-C(14a) to C(13), C(14) and C(15). Finally, the linkage of the above four fragments were 

confirmed by the key HMBC correlations from H-C(6) and H-C(7) to C(5), H-C(9) to C(7), C(8a), 

C(10) and C(11), and from H-C(15) to C(10), C(16), C(17) and C(21), respectively (Figure 2). Thus, 

the planar structure of 1 was elucidated to be 2-methoxy-3,5-dimethyl-6-(4-(2,4,6-trimethyl-4'-nitro-

1,2-dihydro-[1,1'-biphenyl]-2-yl)methylene)tetrahydrofuran-2-yl)-4H-pyran-4-one. The relative 

stereo-configurations of C-10 and C-15 were determined on the basis of the NOE correlation between 

H-C(10a) and H-C(15) (Figure 2). 

Biosynthetic studies have revealed that these nitroaryl-substituted polyene metabolites are 

assembled from nitrobenzoate, malonate, and methylmalonate by modular polyketide synthases 

followed by tailoring reactions [5, 7, 15, 16]. Compound 1, as a biogenesis analogue, should have the 

same biosynthetic origin. The formation of the carbon-carbon bond between C(10) and C(15) may 

arise from the mechanism of carbon cation rearrangement similar to the cyclization catalyzed by 

terpene synthases (Figure 3). 
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Figure 2. The key 1H-1H COSY, NOESY and HMBC correlations for compounds 1 and 3 

      
Table 1. 1H (600 MHz) and 13C (150 MHz) NMR data of 1 (CD3OD) and 2 (C5D5N） 

No. 
1 2 

δH (mult., J in Hz) δC δH (mult., J in Hz) δC 

1 / 164.5 (C) / 162.1 (C) 

1a 3.94 (s) 56.5 (CH3) 3.85 (s) 55.3 (CH3) 

2 / 100.6 (C) / 99.3 (C) 

2a 1.75 (s) 7.0 (CH3) 2.01 (s) 7.3 (CH3) 

3 / 182.8 (C) / 180.0 (C) 

4 / 121.0 (C) / 120.3 (C) 

4a 1.81 (s) 9.3 (CH3) 2.18 (s) 9.5 (CH3) 

5 / 157.0 (C) / 155.8 (C) 

6 4.41 (t, J = 7.3 Hz) 74.4 (CH) 5.28 (dd, J = 6.1, 7.3 Hz) 73.5 (CH) 

7a 

7b 

2.49 (dd, J = 6.6, 15.0 Hz) 

2.71 (dd, J = 7.9, 15.0 Hz) 
38.2 (CH2) 

3.01 (dd, J = 6.1, 14.7 Hz) 

3.09 (dd, J = 7.4, 14.7 Hz) 
38.2 (CH2) 

8 / 138.1 (C) / 139.7 (C) 

8a 
3.54 (d, J = 13.1 Hz) 

4.36 (d, J = 13.1 Hz) 
69.5 (CH2) 

5.04 (m) 

4.87 (d, J = 14.0 Hz) 
70.8 (CH) 

9 5.31 (s) 129.8 (CH) 6.22 (s) 126.9 (CH) 

10 / 45.2 (C) / 134.9 (C) 

10a 1.24 (s) 29.0 (CH3) 2.10 (s) 18.4 (CH3) 

11 5.25 (s) 126.8 (CH) 6.06 (s) 136.0 (CH) 

12 / 131.9 (C) / 135.5 (C) 

12a 1.82 (s) 21.6 (CH3) 2.08 (s) 17.8 (CH3) 

13 5.87 (s) 124.7 (CH) 6.19 (s) 135.5 (CH) 

14 / 137.1 (C) / 139.9 (C) 

14a 1.66 (s) 22.8 (CH3) 2.10 (s) 19.7 (CH3) 

15 3.19 (s) 57.4 (CH) 6.62 (s) 128.6 (CH) 

16 / 149.5 (C) / 145.0 (C) 

17 7.39 (d, J = 8.5 Hz) 131.9 (CH) 7.51 (d, J = 8.8 Hz) 129.9 (CH) 

18 8.07 (d, J = 8.5 Hz) 123.5 (CH) 8.27 (d, J = 8.8 Hz) 123.7 (CH) 

19 / 148.4 (C) / 146.7 (C) 

20 8.07 (d, J = 8.5 Hz) 123.5 (CH) 8.27 (d, J = 8.8 Hz) 123.7 (CH) 

21 7.39 (d, J = 8.5 Hz) 131.9 (CH) 7.51 (d, J = 8.8 Hz) 129.9 (CH) 

 
The molecular formula of 3 was determined to be C13H19NO3 on the basis of the HRESIMS quasi 

molecular ion peak at m/z 238.0702 [M + H]+ (Calcd. for C13H20NO3
+, 238.1438). The 1H, 13C NMR 

and HMBC data of 3 revealed 13 signals for four methyls (one oxygenated), five olefinic methines, an 

aliphatic methine and three quaternary sp2 carbons (Table 2). Two fragments including a pentadiene 

moiety from C(2) to C(6) and a three carbon moiety of C(1')-C(2')-C(3') were confirmed by the 1H-1H 

COSY correlations. The HMBC correlations from H-C(2) and H-C(3) to C(1) indicated a 2,4-

hexadienoyl moiety. The planar structure was confirmed by the key HMBC correlations (Figure 2 and 
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Table S3). The geometries of the C(2)/C(3) and C(4)/C(5) double bonds were determined to be 2Z and 

4E on the basis of the cis 1H-1H coupling constants of J2,3 = 11.2 Hz and the trans 1H-1H coupling 

constant of J4,5 = 15.0 Hz, respectively, which was supported by the NOE correlations between H-C(2) 

and H-C(3), H-C(3) and H-C(5), and H-C(4) and H-C(6). Additionally, the NOE between H-C(2') and 

H-C(6') determined an E-configuration of the C(3')/C(4') double bond. Thus, compound 3 was 

elucidated to be methyl-4-((2Z,4E)-hexa-2,4-dienamido)-2-methylpent-2-enoate. 

 
Figure 3. The proposed formation of 1 

 

The 1D NMR and HMQC data of 4 indicated the presence of three methyls, five olefinic methines, 

an aliphatic methine and three quaternary sp2 carbons (Table 2), which were identical with those of 

sarmentosamide (Table S6) [3]. Detailed analysis of the 1H-1H COSY and HMBC spectra data of 4 

(Table S4) confirmed the structure of 4 as N-(4'-carbamoyl-3'E-penten-2'-yl)hexa-2Z,4E-dienamide, 

which was supported by the ESIMS quasi molecular ion peak at m/z 223.4 [M + H]+. 
 

Table 2. 1H (400 MHz) and 13C (100 MHz) NMR data of 3 (C5D5N) and 4 (CD3OD) 

No. 
3 4  

H (mult., J in Hz) C H (mult., J in Hz) C 

1 / 166.6 (C) / 168.3 (C) 

2 5.96 (d, J = 11.2 Hz) 120.1 (CH) 5.58 (d, J = 11.4 Hz) 119.3 (CH) 

3 6.49 (dd, J = 11.2, 12.8 Hz) 141.7 (CH) 6.43 (t, J = 11.4 Hz) 142.7 (CH) 

4 8.18 (dd, J = 12.8, 15.0 Hz) 130.2 (CH) 7.43 (dt, J = 11.4, 14.8 Hz) 129.9 (CH) 

5 5.91 (dq, J = 6.7, 15.2 Hz) 137.8 (CH) 6.05 (dd, J = 6.8, 14.8 Hz) 139.1 (CH) 

6 1.68 (d, J = 6.7 Hz) 18.8 (CH3) 1.84 (dd, J = 1.0, 6.8 Hz) 18.8 (CH3) 

1' 1.31 (d, J = 6.8 Hz) 20.7 (CH3) 1.26 (d, J = 6.8 Hz) 20.7 (CH3) 

2' 5.22 (m) 44.1 (CH) 4.81 (dq, J = 6.8, 8.6 Hz) 44.4 (CH) 

3' 6.91 (d, J = 9.1 Hz) 144.4 (CH) 6.25 (dd, J = 1.3, 8.6 Hz) 139.2 (CH) 

4' / 128.5 (C) / 132.4 (C) 

5' / 169.1 (C) / 174.3 (C) 

5'a 3.65 (s) 52.1 (CH3)   

6' 2.10 (s) 13.3 (CH3) 1.93 (d, J = 1.2 Hz) 13.3 (CH3) 

 

Diverse activities of spectinabilin derivatives have been reported such as immunosuppressant 

activity [8, 9],  androgen antagonist activity [11], cytotoxic [17], nematocidal activity [14, 18] and 

antifungal activity [2]. In this study, compounds 1–4 showed no apparent inhibitory activities against 

all tested bacterial and fungal strains in agar diffusion assay at 50 g/disc, while amphotericin B and 

ampicillin as positive controls clearly showed inhibitory zones against all the tested microorganisms. 
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