A New Lignan Glycoside from the Roots of *Silene tatarinowii* Regel

Xiaofei Liang##, **Yuze Li**##, **Yuwen Cui**##, **Zhuofei Liang**###, **Wenli Huang**###, **Yi Jiang**###, **Huawei Zhang**### and **Xiaomei Song**###*

1 School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P.R. China
2 Department of Pharmacy, Xi’an Medical University, Xi’an 710021, P.R. China

(Received January 20, 2020; Revised May 29, 2020; Accepted June 03, 2020)

Abstract: A new lignan glycoside, siletatoside A (1), and three known lignans, (+)-isolariciresinol (2), balanophonin (3), and (+)-lariciresinol (4), were isolated from the roots of *Silene tatarinowii* Regel. Compounds 2–4 were isolated from the *Silene* genus for the first time. Their structures were determined based on physicochemical properties and spectroscopic methods. The structure of siletatoside A was elucidated for the first time. The cytotoxicity of 1–4 was evaluated in vitro in human HCT116, HT29, A549, and H1299 tumor cell lines. These compounds displayed weak cytotoxicity in the human cancer cell lines.

Keywords: *Silene tatarinowii*; lignan; siletatoside A; cytotoxicity. © 2020 ACG Publications. All rights reserved.

1. **Plant Source**

Silene tatarinowii Regel was collected in July 2018 from Shaanxi Province, China and authenticated by Prof. Jitao Wang (School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China). A voucher specimen (herbarium No.20180712) was stored in the Medicinal Plants Herbarium, Xianyang, China.

2. **Previous Studies**

Silene tatarinowii Regel, which belongs to the genus *Silene*, is used for the treatment of dropsy and rheumatism in China [1]. Characteristic components, such as ecdysteroids and triterpenoid saponins, have been isolated from plants of the *Silene* genus [2-3]. Ecdysteroids are present in 115 species of *Silene* and regarded as chemotaxonomic markers [4]. However, few phytochemical investigations on the roots of *S. tatarinowii* Regel have been reported. As part of an ongoing study on biological constituents from the roots of *S. tatarinowii* Regel, a new lignan glycoside and three known lignans, (+)-isolariciresinol (2) [5], balanophonin (3) [6], and (+)-lariciresinol (4) [7], were procured.
A new lignan glycoside (Figure 1). In this study, structure elucidation of the isolated compounds and their cytotoxic activities are reported.

3. Present Study

The dry roots of *S. tatarinowii* Regel (9.8 kg) were ground into a crude powder and extracted three times with 70% EtOH under reflux. After the removal of the solvent under reduced pressure, the concentrated residue was continuously fractionated with petroleum ether and *n*-BuOH. The *n*-BuOH extract (180 g) was fractionated by column chromatography (CC) on silica gel and eluted with CHCl₃-*MeOH* (30:1 to 1:1) to produce four fractions (Fr. 1–4). A portion of Fr. 2 (26 g) with MeOH (100%) was purified over a Sephadex LH-20 column, eluted with (CHCl₃-*MeOH*, 1:1), and purified by HPLC (Ultimate XB-C₁₈, 10 mm × 250 mm) with MeOH-*H₂O* (28%, 3 mL/min) to produce compounds 1 (8.0 mg) and 2 (20.0 mg). Fr. 3 (31.8 g), using MeOH-*H₂O* (0:10 to 8:2) as the eluent, was also subjected to CC on octadecylsilyl gel to afford compounds 3 (11.2 mg) and 4 (12.6 mg).

Siletatoside A (1): yellow amorphous powder (MeOH); [α]D₂⁵ +37.1 (c 0.01, MeOH); IR νmax (in MeOH) cm⁻¹: 3377, 2940, 1735, 1600, 1450, 1377; UV λmax (MeOH): 232 nm; HR-ESI-MS at m/z 733.1950 [M + Na]⁺; ¹H-NMR (pyridine-d₅, 400 MHz): δH 7.46 (1H, s, H-2), 7.38 (1H, d, J = 8.2 Hz, H-6), 7.31 (1H, d, J = 8.2 Hz, H-6'), 7.22 (1H, d, J = 7.6 Hz, H-5), 7.20 (1H, d, J = 7.6 Hz, H-5'), 6.18 (1H, d, J = 3.0 Hz, H-1'”), 5.78 (1H, d, J = 5.2 Hz, H-7), 5.72 (1H, d, J = 3.7 Hz, H-7'), 5.53 (1H, m, H-3”), 5.22 (1H, d, J = 3.4 Hz, H-5”), 5.12 (1H, d, J = 12.8 Hz, H-1'α), 5.12 (1H, d, J = 12.8 Hz, H-1'β), 4.92 (1H, m, H-2'”), 4.63 (1H, m, H-4'”), 4.63 (1H, m, H-3’”), 4.56 (1H, m, H-6”α), 4.48 (1H, m, H-8), 4.48 (1H, m, H-8’), 4.45 (1H, m, H-6”β), 4.28 (1H, m, H-4’”), 4.19 (1H, m, H-5’”), 3.78 (3H, s, H-10), 3.78 (3H, s, H-10’); ¹³C-NMR (pyridine-d₅, 100 MHz): δC 174.6 (C-9), 170.7 (C-9’), 149.3 (C-3), 149.1 (C-3’), 149.1 (C-4), 148.8 (C-4’), 131.6 (C-1), 131.3 (C-1’), 121.2 (C-6), 121.1 (C-6’), 117.0 (C-5), 116.9 (C-5’), 112.4 (C-2), 111.9 (C-2’), 110.2 (C-2’’), 94.9 (C-1”’), 89.1 (C-4”), 84.0 (C-7), 82.3 (C-7), 80.5 (C-3”), 76.0 (C-3’”), 75.3 (C-2’”), 74.8 (C-5”), 74.2 (C-5’”), 72.7 (C-4’”), 65.6 (C-6’”), 64.4 (C-1’”), 63.7 (C-6’’”), 56.8 (C-8), 56.7 (C-8’), 56.4 (C-10), 56.3 (C-10’).

![Figure 1. Structures of compounds 1-4](image-url)
Siletatoside A (I) was a yellow amorphous powder that showed maximum UV absorption at 232 nm. Its molecular formula was determined to be C_{32}H_{38}O_{18} based on the high-resolution electrospray ionization mass spectrometry positive ion at \(m/z \) 733.1950 [M + Na]^+ (calcd for C_{32}H_{38}O_{18}Na, 733.1956). In the \(^1\)H-nuclear magnetic resonance (NMR) spectrum of I, six aromatic proton signals at \(\delta_H \) 7.46 (s, H-2), 7.20 (d, \(J = 7.6 \) Hz, H-5), 7.38 (d, \(J = 8.2 \) Hz, H-6) and 7.48 (s, H-2'), 7.22 (d, \(J = 7.6 \) Hz, H-5'), and 7.31 (d, \(J = 8.2 \) Hz, H-6') were assigned to two ABX spin systems, along with two methoxy groups at \(\delta_H \) 3.78 and 3.79 (each 3H, s). The anomeric proton doublet at \(\delta_H \) 6.18 with a coupling constant (\(J \)) of 3.0 Hz indicated that I was an \(\alpha \)-glucosyl [8]. Methine proton signals at \(\delta_H \) 5.72 (H-7'), 5.78 (H-7), 4.48 (H-8), and 4.48 (H-8') were from the oxycyclopentane ring. The \(^{13}\)C-NMR spectrum displayed 32 carbon signals. A distortionless enhancement of polarization transfer 135° experiment showed that there were eight quaternary carbons. There were two carbonyl signals at \(\delta_C \) 170.7 and 174.6 in the low field region. There were two quaternary carbon signals at \(\delta_C \) (131.3 and 131.6), six methine carbon signals at \(\delta_C \) (112.4, 111.9, 116.9, 117.0, 121.1, and 121.2), and four oxygenated quaternary carbon signals at \(\delta_C \) (148.8, 149.1, 149.1, and 149.4) owing to the dual sets of ABX systems. Twelve oxygenated carbon signals were ascribable to two glycosyl moieties (\(\delta_C \) 94.9, 75.3, 76.0, 72.7, 74.2, and 63.7 and \(\delta_C \) 64.4, 110.2, 80.5, 89.1, 74.8, and 65.6), which indicated the existence of a glucopyranose and a fructofuranose. Four methine carbon signals at \(\delta_C \) (56.8, 56.7, 82.3, and 84.0) were assigned to an oxycyclopentane ring owing to the effect of electronic absorption of the oxygen atoms. Methine carbon signals C-7 and C-7' shifted to a lower field, as the C-7 and C-7' signals of the cyclobutane ring are usually perceived at \(\delta_C \) 44.0 and 45.0, respectively [8]. When comparing the NMR data of I with a reference compound, 2,5-bis-(4-hydroxy-3-methoxyphenyl)-tetrahydrofuran-3,4-dicarboxylic acid [9], the aglycone of compound I exhibited similar spectroscopic features, based on heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond coherence (HMBC).

Figure 2. Key: H __H COSY, HMBC and NOESY relevant of compound I

In addition, HMBC correlations (Figure 2) of H-2/C-1, C-4, C-6, and C-7; H-2'/C-1', C-4', C-6', and C-7'; H-6/C-4 and C-7; H-6'/C-4' and C-7'; H-7/C-2, C-6, C-8', and C-9; H-7'/C-2', C-6', C-8, C-9; H-7/C-2, C-6, C-8, C-9; H-7'/C-2', C-6', C-8.
and C-9; H-8/C-8' and C-9; and H-8/C-8 and C-9' were observed. Furthermore, the HMBC spectrum correlation signal of H-1'' (δH 6.18) of the glucopyranosyl moiety and C-2'' (δC 110.2) of the fructofuranosyl moiety indicated that the sugar groups were connected as [β-D-fructofuranosyl-(2→1)-α-D-glucopyranose] [10]. HMBC correlations of H-1''/C-9 and H-3''/C-9' suggested that the two carbonyl carbon were attached to the fructofuranosyl moiety. Moreover, the correlations of OMe-3/C-3 and OMe-3'/C-3' showed that the two methoxy groups were situated in C-3 and C-3'. In the nuclear Overhauser effect spectrum (Figure 2) of 1, the nuclear Overhauser effect correlations observed of H-2/H-8 and OMe-3 and H-2/H-7' and OMe-3' (Figure 2); thus, the relative configuration of 1 was determined. To determine the absolute configuration, experimental circular dichroism (CD) spectra were compared with predicted calculations from the time-dependent density functional theory, which is a quantum mechanical theory [11]. The calculated electronic CD spectrum for the 7S,8R,7'R,8'S-1 stereoisomer matched and the experimental CD data of 1 are in good agreement (Figure 3) in the proposed structure.

![Experimental and calculated ECD spectra of 1](image)

Figure 3. Experimental and calculated ECD spectra of 1
The experimental ECD spectrum of 1 (red line) and the calculated ECD spectrum of (7S,8R,7'R,8'S)-1 (black line) and (7R,8S,7'S,8'R)-1 (black short dash)

Cytotoxicity data of compounds 1-4 against human HCT116, HT29, A549 and H1299 cell lines, the IC50 values were shown in Table 1.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Cell lines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HCT116</td>
</tr>
<tr>
<td>5-Fu</td>
<td>2.4 ± 1.9</td>
</tr>
<tr>
<td>1</td>
<td>87.3 ± 5.3</td>
</tr>
<tr>
<td>2</td>
<td>89.3 ± 3.1</td>
</tr>
<tr>
<td>3</td>
<td>69.3 ± 3.2</td>
</tr>
<tr>
<td>4</td>
<td>>100</td>
</tr>
</tbody>
</table>

*IC50 values are means from three independent experiments (average ± SD) in which each compound concentration was tested in three replicate wells; 5-Fu as positive control.
Acknowledgments

This project was financially supported by Key R&D Program of Shaanxi Province (grant No.2019ZDSLF04-03-02); Subject Innovation Team of Shaanxi University of Chinese Medicine (2019-YL12).

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/journal/records-of-natural-products

ORCID
Xiaofei Liang: 0000-0001-8018-4433
Yuze Li: 0000-0001-7571-3214
Yuwen Cui: 0000-0001-9153-6406
Zhuofei Liang: 0000-0003-3913-8595
Wenli Huang: 0000-0003-2767-7831
Yi Jiang: 0000-0003-1200-1441
Xiao mei Song: 0000-0003-1906-1578

References