

Rec. Nat. Prod. 15:3 (2021) 213-218

records of natural products

A New Angular Naphthopyrone from Crinoid Colobometra perspinosa

Hsu-Ming Chung^{01*}, Ling-Tsung Hsiao¹, Zong-You Li^{1,2} and Zhi-Hong Wen⁰²

¹Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan ²Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan

(Received July 31, 2020; Revised October 12, 2020; Accepted October 16, 2020)

Abstract: A chemical investigation was carried out on a crinoid *Colobometra perspinosa* collected from Hengchun Peninsula in the South China Sea, which led to the isolation of five angular naphthopyrones (1–5), including one new metabolite, 8-hydroxy-5,6,10-trimethoxy-2-pentyl-4*H*-naphtho[1,2-b]pyran-4-one (1). Their structures were assigned based on spectroscopic methods, including UV, HRESIMS, 1D- and 2D-NMR spectra. The anti-inflammatory activity of the isolated compounds was evaluated and compound **5** was found to inhibit the accumulation of the pro-inflammatory iNOS protein in LPS-stimulated RAW264.7 macrophages.

Keywords: : angular naphthopyrone; crinoid; *Colobometra perspinosa*; iNOS. © 2020 ACG Publications. All rights reserved.

1. Animal Source

Specimens of *C. perspinosa* were collected in May of 2016 by scuba divers at a depth of 10-15 m, at the coast of the Hengchun Peninsula in the South China Sea. The specimens were immediately frozen and a voucher specimen (NMMBA-SI-2016-1) was preserved in the National Museum of Marine, Pingtung, Taiwan

2. Previous Studies

In the past 50 years, several angular naphthopyrones were isolated from the crinoids of *Comantheria perplexa* [1], *Comantheria rotula* [2], *Comantheria briareus* [3], *Comanthus parvicirrus* [4-8], as well as an unidentified crinoid of the family Comasteridae [9].

^{*} Corresponding author: E-Mail: <u>shiuanmin@mail.nptu.edu.tw</u>

A new angular naphthopyrone

3. Present Study

C. perspinosa (wet/dry weight = 300/120 g) were sliced and extracted with a mixture of methanol:dichloromethane (1:1). The extract was partitioned between ethyl acetate (EtOAc) and H₂O. The EtOAc layer (2.22 g) was applied on silica gel column and eluted with the gradients solvent of *n*-hexane:EtOAc:acetone (from 100% *n*-hexane to 100% acetone) to furnish 15 sub-fractions. Among them, the sub-fraction 13 was further purified by NP-HPLC, using a solvent mixture of *n*-hexane:acetone:EtOAc (6:4:1) to give compound **1** (3.4 mg) (Figure 1).

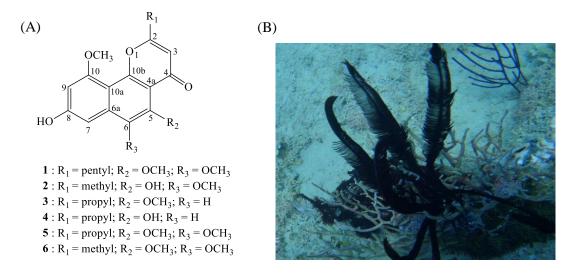


Figure 1. (A) The structures of compounds 1-6; (B) Colobometra perspinosa in its natural habitat

8-Hydroxy-5,6,10-trimethoxy-2-pentyl-4H-naphtho[1,2-b]pyran-4-one (1) was isolated as a green powder that showed a sodiated adduct ion peak at m/z 395.1465 (M + Na)⁺ in its HRESIMS spectrum, accounted for the molecular formula, $C_{21}H_{24}O_6$ (Calcd. for $C_{21}H_{24}O_6Na$, 395.1465) (degrees of unsaturation = 10). The IR spectrum showed absorption bands attributed to hydroxy (3368 cm⁻¹) and α , β -unsaturated ketonic (1645 cm⁻¹) groups. The ¹³C NMR and DEPT spectra showed 21 carbon signals including one methyl, four sp³ methylenes, three methoxy groups ($\delta_{\rm C}$ 56.1, C-18; 61.2, C-16; 61.8, C-17), three sp² methines ($\delta_{\rm C}$ 97.7, C-7; 99.3, C-9; 110.6, C-3), and ten quaternary sp² carbons, one of which was a carbonyl ($\delta_{\rm C}$ 177.7, C-4). The ¹H NMR spectrum showed signals for one singlet methyl ($\delta_{\rm H}$ 0.92, 3H, t, J = 7.5 Hz, H₃-15), four pairs of methylene protons ($\delta_{\rm H}$ 1.38, 2H, m, H₂-14; 1.41, 2H, m, H₂-13; 1.85, 2H, td, *J* = 15.0, 7.5 Hz, H₂-12; 2.72, 2H, t, *J* = 7.5 Hz, H₂-11), three methoxy groups ($\delta_{\rm H}$ 3.93, 3H, s, H₃-16; 3.98, 3H, s, H₃-17; 4.00, 3H, s, H₃-18), and three aromatic protons ($\delta_{\rm H}$ 6.49, 1H, s, H-3; 6.78, 1H, d, J = 2.5 Hz, H-9; 7.20, 1H, d, J = 2.5 Hz, H-7), which were observed in the ¹H NMR spectrum (Table 1). The structural units of 1 were determined using the COSY spectrum, then two separated coupling systems of H-7/H-9 (by meta coupling) and H₂-11/H₂-12/H₂-13/H₂-14/H₃-15 were subsequently identified. The HMBC correlation between the methoxy group resonances at H₃-16/C-5; H₃-17/C-6; H₃-18/C-10, and H-7/C-6, C-6a, C-8, C-9; H-9/C-7, C-8, C-10 established the presence of the methoxy group at the aromatic rings. The presence of a pentyl group on C-2 was supported by the HMBC correlation between H-3/C-2, C-11, and H_2 -11/C-2, C-3 (Figure 2). The UV differences between the linear and angular naphthopyrones are well documented and the absorptions at 238, 273, and 361 nm of 1 indicated an angular naphthopyrone [4].

Position	$\delta_{ m H}$ a	$\delta_{\rm C,^b}$ type		
2		168.3, C ^c		
3	6.49 s	110.6, CH		
4		177.7, C		
4a		113.3, C		
5		145.9, C		
6		143.8, C		
ба		159.5, C		
7	7.20 d (2.5)	97.7, CH		
8		107.7, C		
9	6.78 d (2.5)	99.3, CH		
10		159.9, C		
10a		135.4, C		
10b		154.0, C		
11	2.72 t (7.5)	34.0, CH ₂		
12	1.85 td (7.5, 15.0)	26.1, CH ₂		
13	1.41 m	31.1, CH ₂		
14	1.38 m	22.4, CH ₂		
15	0.92 t (7.5)	13.9, CH ₃		
16	3.96 s	61.2, CH ₃		
17	3.98 s	61.8, CH ₃		
18	4.00 s	56.1, CH ₃		
^a Spectre recorded at 400 MHz in CDC1. at 25 °C				

Table 1. ¹H and ¹³C NMR data for compound 1

^aSpectra recorded at 400 MHz in CDCl₃ at 25 °C. ^bSpectra recorded at 100 MHz in CDCl₃ at 25 °C. ^cMultiplicity deduced by DEPT spectra.

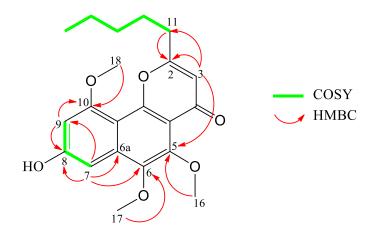


Figure 2. The ¹H-¹H-COSY and HMBC correlations for 1

The previously studied ¹³C NMR were similar to the angular naphthopyrone aromatic ring of compound **1** (Table 2) [8-9]. The known compounds **2-5** were identified as compound **2** [9], compound **3** [9], comparing [4], and 6-methoxycomaparvin-5-methyl ether [8] by comparing their spectroscopic data with the reported literature. Angular naphthopyrones commonly possess a methyl and a propyl group at the C-2 position. Compound **1** is the first identified compound with a pentyl group at C-2.

	1	5	6
Position	$\delta_{\rm C}^{\rm a}$, type	$\delta_{\rm C}^{\rm b}$, type	$\delta_{\mathrm{C},\mathrm{c}}$
4a	113.3, C	114.6, C	113.3
5	145,9, C	146.9, C	146.0
6	143.8, C	135.2, C	142.6
6a	159.5, C	158.0, C	134.2
7	97.7, CH	97.4, CH	96.3
8	107.7, C	108.4, C	159.7
9	99.3, CH	99.0, CH	99.6
10	159.9, C	160.1, C	159.3
10a	135.4, C	143.6, C	106.6
10b	154.0, C	153.0, C	152.7
Cmaatma maaamda	d at 125 MILT in C	DCL at 25 °C bSmaa	the managed at 100 MI

Table 2. Key ¹³C NMR data for compounds 1, 5, and 6

^aSpectra recorded at 125 MHz in CDCl₃ at 25 °C. ^bSpectra recorded at 100 MHz in CDCl₃ [8]. ^cSpectra recorded at 125 MHz in DMSO- d_6 [9].

The *in vitro* anti-inflammatory activities of compounds 1–5 were measured by examining the inhibition of LPS (lipopolysaccharide) induced upregulation of iNOS (inducible nitric oxide synthetase) and COX-2 (cyclooxygenase-2) proteins in macrophages using Western blotting analysis. RAW264.7 cells were obtained from the American Type Culture Collection (ATCC TIB-71, Manassas, VA, USA) [10]. In comparison with the cells stimulated with LPS alone, the group of macrophages treated with **5** (10 μ M) showed that compound **5** exhibited a potent anti-inflammatory effect with 83.74% iNOS inhibition (Figure 3 and Table 3).

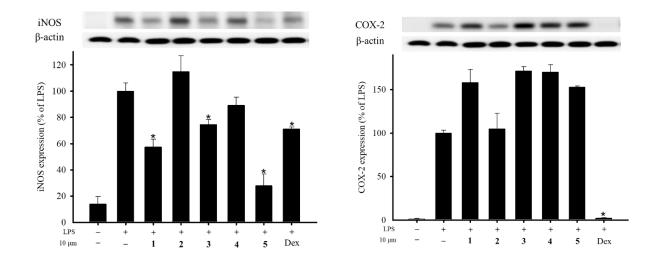


Figure 3. Effect of compounds 1–5 (10 μ M) on pro-inflammatory iNOS and COX-2 protein expressions in the LPS-stimulated murine macrophage cell line RAW264.7 by Western blotting analysis. Data were normalized to those of cells treated with LPS alone, and the cells treated with dexamethasone (10 μ M) were used as a positive control. Data are expressed as the mean \pm SEM (n = 3). Significantly different from the cells treated with LPS (p < 0.05).

	iNOS	COX-2	β-actin
Control	13.96 ± 5.76	1.06 ± 1.16	105.75 ± 4.03
LPS	100.00 ± 6.09	100.00 ± 5.86	100.00 ± 0.50
1	57.26 ± 6.14	158.19 ± 26.29	124.13 ± 7.01
2	114.87 ± 11.95	104.80 ± 31.14	117.88 ± 12.39
3	74.59 ± 3.68	171.37 ± 8.76	127.43 ± 4.49
4	89.16 ± 6.06	170.09 ± 14.63	120.17 ± 16.76
5	27.95 ± 8.75	152.81 ± 2.13	103.67 ± 18.26
Dex ^a	71.13 ± 1.39	2.22 ± 0.69	130.04 ± 8.07

 Table 3. Effects of compounds 1-5 on LPS-induced iNOS and COX-2

 protein expressions in macrophages

^aDexamethasone (DEX, 10 µM) was used as a positive control.

Acknowledgments

We thank Dr. Ping-Jyun Sung for providing the samples. This research was supported by the grants from the National Pingtung University; and the Ministry of Science and Technology, Taiwan (Grant Nos: MOST 107-2320-B-153 -001) awarded to Hsu-Ming Chung.

Supporting Information

Supporting Information accompanies this paper on <u>http://www.acgpubs.org/journal/records-of-natural-products</u>

ORCID 🗓

Hsu-Ming Chung: <u>0000-0003-1472-9268</u> Ling-Tsung Hsiao: <u>0000-0003-4486-2035</u> Zong-You Li: <u>0000-0002-7849-1909</u> Zhi-Hong Wen: <u>0000-0003-4411-044X</u>

References

- [1] R. A. Kent, I. R. Smith and M. D. Sutherland (1970). Pigments of marine animals. X. Substituted naphthopyrones from the crinoid *Comantheria perplexa*, *Aust. J. Chem.* **23**, 2325-2335.
- [2] J. Dai, Y. Liu, H. Jia, Y.D. Zhou and D. G. Nagle (2007). Benzochromenones from the marine crinoid *Comantheria rotula* inhibit hypoxia-inducible factor-1 (HIF-1) in cell-based reporter assays and differentially suppress the growth of certain tumor cell lines, *J. Nat. Prod.* **70**, 1462-1466.
- [3] A. K. Francesconi (1980). Pigments of some echinoderms collected from Western Australian waters, *Aust. J. Chem.* **33**, 2781-2784.
- [4] I. R. Smith and M. D. Sutherland (1971). Pigments of marine animals. XI. angular naphthopyrones from the crinoid *Comanthus parvicirrus timorensis, Aust. J. Chem.* **24**, 1487-1499.
- [5] J. A. Rideout, I. R. Smith and M. D. Sutherland (1976). Pigments of marine animals. XII. The synthesis of certain substituted naphthopyrones related to crinoid pigments, *Aust. J. Chem.* **29**, 1087-1098.
- [6] J. A. Rideout, I. R. Smith and M. D. Sutherland (1979). Chemical defense of crinoids by polyketide sulphates, *Aust. J. Chem.* **35**, 1273-1274.
- [7] Y. Sakuma, J. Tanaka and T. Higa (1987). New naphthopyrone pigments from the crinoid *Comanthus parvicirrus, Aust. J. Chem.* **40**, 1613-1616.

- [8] F. Folmer, W. T. A. Harrison, J. N. Tabudravu, M. Jaspars, W. Aalbersberg, K. Feussner, A. D. Wright, M. Dicato and M. Diederich (2008). NF-κB-inhibiting naphthopyrones from the Fijian echinoderm *Comanthus parvicirrus, J. Nat. Prod.* **71**, 106-111.
- [9] H. R. Bokesch, L. K. Cartner, R. W. Fuller, J. A. Wilson, C. J. Henrich, J. A. Kelley, K. R. Gustafson, J. B. McMahon and T. C. Mckee (2010). Inhibition of ABCG2-mediated drug efflux by naphthopyrones from marine crinoids, *Bioorg. Med. Chem. Lett.* 20, 3848-3850.
- [10] Y. Y. Lin, S. C. Lin, C. W. Feng, P. C. Chen, Y. D. Su, C. M. Li, S. N. Yang, Y. H. Jean, P. J. Sung, C. Y. Duh and Z. H. Wen (2015). Anti-inflammatory and analgesic effects of the marine-derived compound excavatolide B isolated from the culture-type formosan Gorgonian *Briareum excavatum*, *Mar. Drugs* 13, 2559-2579.

A C G publications