

Rec. Nat. Prod. X:X (2023) XX-XX

records of natural products

# Chemical Composition, Antibacterial, Synergistic Antibacterial

# and Cytotoxic Properties of the Essential Oil from

## Gelsemium elegans (Gardner & Champ.) Benth.

Youyi Tang <sup>1</sup>, Xinyu Hu <sup>1</sup>, Fan Xu <sup>2</sup>, and Xiang Xing <sup>1</sup>

<sup>1</sup> Marine College, Shandong University, Weihai 264209, P. R. China <sup>2</sup> Sdu-Anu Joint Science College, Shandong University, Weihai, 264209, P. R. China

(Received August 10, 2023; Revised September 21, 2023; Accepted September 25, 2023)

**Abstract:** This study aimed to analyze the chemical composition of the essential oil (GE-EO) isolated from *Gelsemium elegans* (Gardner & Champ.) Benth. aerial parts by GC/FID and GC/MS, and to evaluate its antibacterial, cytotoxic, and synergistic antibacterial properties. A total of 40 compounds were characterized, representing 95.1% of the total oil. The major constituents were identified as  $\alpha$ -terpineol (18.8%), *n*-pentadecanal (11.5%), methyl hexadecanoate (7.2%), *n*-tetradecanol (5.2%) and linalool (4.1%). In microbroth dilution tests, GE-EO demonstrated antibacterial activities against *Staphylococcus aureus*, *Bacillus subtilis*, and *Escherichia coli* with minimum inhibitory concentrations (MICs) ranging from 0.16 to 0.32 mg/mL. In addition, significant synergistic effects were observed in both combinations of GE-EO with chloramphenicol and streptomycin. Based on the MTT assay, GE-EO was found to have broad-spectrum cytotoxicities against the A-549, MCF-7, HepG2, HCT-116, and HL-7702 cell lines with IC<sub>50</sub> values ranging from 60.51 ± 1.08 to 159.56 ± 9.13 µg/mL.

**Keywords:** *Gelsemium elegans*; essential oil; antibacterial; synergistic; cytotoxic. © 2023 ACG Publications. All rights reserved.

### **1. Plant Source**

The aerial parts of *Gelsemium elegans* (Gardner & Champ.) Benth. were harvested in Rong County, Guangxi Province, China in June 2021. The plant was identified by Dr. Hong Zhao and a voucher specimen was deposited in the herbarium of Institute of Botany, Chinese Academy of Sciences (PE02064381).

### 2. Previous Studies

The genus *Gelsemium* (family Loganiaceae) comprises three species, of which *Gelsemium* elegans (Gardner & Chapm.) Benth. is a poisonous liana native to China and Southeast Asia [1]. In Chinese folk medicine, it is used for the treatment of pain, spasticity, ulcers, inflammation, and

The article was published by ACG Publications

http://www.acgpubs.org/journal/records-of-natural-products Month-Month 202X EISSN:1307-6167 DOI: http://doi.org/10.25135/mp.417.2308.2872

Available online: October 10, 2023

<sup>\*</sup> Corresponding author: E-Mail: <u>xingxiang@email.sdu.edu.cn</u>; Phone +86-631-5688303.

#### Biological activities of essential oil from Gelsemium elegans

gastrointestinal cancer [2]. Alkaloids, the primary active compounds in the *Gelsemium elegans*, have been extensively investigated for their biological properties in a variety of pharmaceutical fields, such as analgesic, anti-inflammatory [3], and anti-tumor activities [4, 5]. To the best of our knowledge, this is the first report on the chemical composition, antibacterial and cytotoxic activities of GE-EO, as well as the synergistic interactions of GE-EO with commercial antibiotics.

#### 3. Present Study

In the present study, hydrodistillation of the aerial parts of *G. elegans* produced a pale-yellow oil, with a yield of 0.12% (w/w, based on the dry weight). The constituents of GE-EO were analyzed by GC/FID and GC/MS. Forty compounds were identified in the essential oil of *G. elegans*, accounting for 95.1% of the total content of GE-EO (Table 1). Oxygenated monoterpenes (36%), and oxygenated sesquiterpenes (16.8%) were dominant in the essential oil. The major components in GE-EO were identified as  $\alpha$ -terpineol (18.8%), *n*-pentadecanal (11.5%), methyl hexadecanoate (7.2%), *n*-tetradecanol (5.2%) and linalool (4.1%).  $\alpha$ -Terpineol, the most abundant compound among the identified constituents, is a natural monocyclic monoterpene tertiary alcohol that possesses a broad range of biological properties including antimicrobial [6], antioxidant, anti-inflammatory, anti-nociceptive, and anticancer activities [7].

| Compounds                       | RI <sup>a</sup> | RI <sub>lit</sub> <sup>b</sup> | RI range <sup>c</sup> | %    |
|---------------------------------|-----------------|--------------------------------|-----------------------|------|
| Linalool                        | 1098            | 1095 <sup>d</sup>              | 1088-1109             | 4.1  |
| α-Terpineol                     | 1190            | 1186 <sup>d</sup>              | 1178-1203             | 18.8 |
| 2-Hydroxycineol                 | 1223            | 1229 <sup>e</sup>              | 1218-1252             | 3.2  |
| (2E, 4Z)-Decadienal             | 1292            | 1292 <sup>f</sup>              | 1287-1310             | 1.2  |
| Methyl geranate                 | 1316            | 1322 <sup>d</sup>              | 1316-1331             | 0.8  |
| Sobrerol                        | 1378            | 1388 <sup>e</sup>              | 1388 <sup>e</sup>     | 1.3  |
| (3Z)-Hexenyl-(3Z)-hexenoate     | 1383            | 1383 <sup>d</sup>              | 1389 <sup>f</sup>     | 1.3  |
| (E)-Caryophyllene               | 1414            | $1417^{\mathrm{f}}$            | 1405-1440             | 2.4  |
| Carvone hydrate                 | 1425            | $1424^{\mathrm{f}}$            | $1424^{\mathrm{f}}$   | 2.1  |
| Aromadendrene                   | 1441            | 1439 <sup>e</sup>              | 1419–1465             | 1.6  |
| $\alpha$ -Terpinyl isobutanoate | 1471            | 1471 <sup>d</sup>              | $1467^{\mathrm{f}}$   | 0.8  |
| Dehydro- $\beta$ -ionone        | 1482            | 1485 <sup>d</sup>              | 1466-1492             | 1.7  |
| (E)- $\beta$ -Ionone            | 1486            | 1487 <sup>d</sup>              | 1470-1498             | 2.0  |
| $(Z)$ - $\alpha$ -Bisabolene    | 1507            | 1506 <sup>f</sup>              | 1495-1509             | 1.5  |
| cis-Calamenene                  | 1530            | 1528 <sup>e</sup>              | 1511-1541             | 0.9  |
| Dihydroactinidiolide            | 1534            | 1535 <sup>e</sup>              | 1489-1540             | 1.2  |
| (E)-Nerolidol                   | 1562            | 1561 <sup>d</sup>              | 1539-1570             | 1.2  |
| (3Z)-Hexenyl benzoate           | 1571            | 1565 <sup>d</sup>              | 1552-1588             | 1.3  |
| Ledol                           | 1574            | 1571 <sup>f</sup>              | 1549–1599             | 1.3  |
| Caryophyllene oxide             | 1587            | 1582 <sup>d</sup>              | 1563-1595             | 2.0  |
| Viridiflorol                    | 1595            | 1592 <sup>d</sup>              | 1569–1604             | 1.0  |
| Tetradecanal                    | 1608            | 1611 <sup>d</sup>              | 1605-1623             | 2.3  |
| Isospathulenol                  | 1614            | 1630 <sup>f</sup>              | 1621-1641             | 1.4  |
| Ledene oxide-(II)               | 1629            | 1631 <sup>f</sup>              | 1630-1673             | 1.3  |
| <i>τ</i> -Muurolol              | 1644            | 1640 <sup>d</sup>              | 1623-1654             | 1.1  |
| Neointermedeol                  | 1659            | 1658 <sup>d</sup>              | 1654–1677             | 2.1  |
| <i>n</i> -Tetradecanol          | 1672            | 1671 <sup>d</sup>              | 1668–1686             | 5.2  |
| Cadalene                        | 1679            | 1675 <sup>d</sup>              | 1652-1680             | 1.9  |
| trans-Calamenen-10-ol           | 1687            | 1676 <sup>e</sup>              | $1678^{\mathrm{f}}$   | 2.0  |
| <i>n</i> -Pentadecanal          | 1710            | 1715 <sup>e</sup>              | 1703-1728             | 11.5 |
| Hexahydrofarnesyl acetone       | 1840            | 1847 <sup>e</sup>              | 1831–1855             | 1.8  |
| Benzyl salicylate               | 1870            | 1864 <sup>d</sup>              | 1857-1881             | 1.5  |
| Methyl hexadecanoate            | 1920            | 1921 <sup>d</sup>              | 1910–1931             | 7.2  |
| Isophytol                       | 1943            | 1946 <sup>d</sup>              | 1939–1951             | 0.5  |

 Table 1. Chemical composition of GE-EO

| Compounds            | RI <sup>a</sup> | RI <sub>lit</sub> <sup>b</sup> | RI range <sup>c</sup> | %    |
|----------------------|-----------------|--------------------------------|-----------------------|------|
| Methyl linolenate    | 2089            | 2098 <sup>f</sup>              | 2069-2108             | 0.8  |
| Phytol               | 2108            | 2114 <sup>e</sup>              | 2104-2136             | 0.8  |
| Methyl octadecanoate | 2120            | 2124 <sup>d</sup>              | 2110-2139             | 0.5  |
| Linoleic acid        | 2137            | 2132 <sup>d</sup>              | 2097-2158             | 0.7  |
| Gamolenic acid       | 2147            | $2144^{\mathrm{f}}$            | $2144^{\mathrm{f}}$   | 0.3  |
| Ethyl linolenate     | 2172            | $2173^{\rm f}$                 | 1088-1109             | 0.5  |
| Total identified     |                 |                                |                       | 95.1 |

Tang et al., Rec. Nat. Prod. (2023) X:X XX-XX

<sup>a</sup>Retention index calculated from n-alkanes ( $C_7$ - $C_{30}$ ) on HP-5MS column; <sup>b</sup>Linear retention indices from literature: <sup>d</sup>[8]; <sup>e</sup>[9]; <sup>f</sup>[10]; <sup>c</sup>RI range: range of retention indices [10, 11].

Antibacterial Activity of GE-EO: The GE-EO was evaluated for antibacterial activity by the microbroth dilution method against four bacterial strains: *Bacillus subtilis* (ATCC 6633), *Staphylococcus aureus* (ATCC 6538), *Escherichia coli* (ATCC 25922), and *Pseudomonas aeruginosa* (ATCC 27853) [12]. The results in Table 2 showed that the GE-EO displayed strong growth inhibition activities against *S. aureus*, *B. subtilis*, and *E. coli* with MIC values ranging from 0.156 to 0.320 mg/mL, and MBC values from 0.320 to 0.640 mg/mL, and moderate activity against *P. aeruginosa*. The antibacterial activity may be due to the presence of abundant volatile terpenoids such as  $\alpha$ -terpineol and linalool, which have been extensively studied for antibacterial activities [6, 13-15]. Linalool has previously been reported to inhibit bacterial growth by disrupting the cell membrane [16], and  $\alpha$ -terpineol showed antibacterial activity against *E. coli* by inducing morphostructural changes directly in *E. coli*. [6].

**Table 2.** Antibacterial activity of GE-EO

| Test strains                        | MIC (1 | MIC (mg/mL)     |       | mg /mL)         |
|-------------------------------------|--------|-----------------|-------|-----------------|
| Test strains                        | GE-EO  | Ch <sup>a</sup> | GE-EO | Ch <sup>a</sup> |
| Gram-positive                       |        |                 |       |                 |
| Staphylococcus aureus (ATCC 6538)   | 0.160  | 0.004           | 0.320 | 0.008           |
| Bacillus subtilis (ATCC 6633)       | 0.320  | 0.004           | 0.320 | 0.016           |
| Gram-negative                       |        |                 |       |                 |
| Escherichia coli (ATCC 25922)       | 0.320  | 0.004           | 0.640 | 0.008           |
| Pseudomonas aeruginosa (ATCC 27853) | 0.640  | 0.032           | 1.280 | 0.256           |

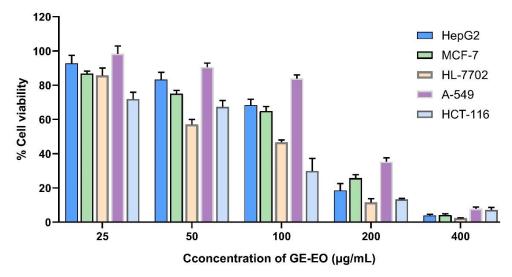
<sup>a</sup> Positive control: Chloramphenicol.

Synergistic Effect of GE-EO with Conventional Antibiotics: The synergistic interactions of GE-EO with the antibiotics chloramphenicol and streptomycin against four pathogens were tested using the checkerboard method [17]. The FICI (Fraction Inhibition Concentration Index) of GE-EO with chloramphenicol or streptomycin are shown in Tables 3 and 4, respectively. The results showed that GE-EO combined with both chloramphenicol and streptomycin exhibited significant synergistic effects on all tested bacteria strains, with FICI values of 0.25-0.50 mg/mL. Additionally, the results of the checkerboard test also demonstrated that the combinations of GE-EO and conventional antibiotics effectively optimize the antibacterial effect of both. Therefore, the strategy of using GE-EO in combination with traditional antibiotics has the potential to treat infections and reverse bacterial resistance.

| Microorganism          |       | $MIC_a, \mu g/mL$ | $MIC_c, \mu g/mL$ | FICI     |  |
|------------------------|-------|-------------------|-------------------|----------|--|
| Staphylococcus aureus  | GE-EO | 160.00            | 40.00             | 0.31 (S) |  |
| ATCC 6538              | Ch    | 4.00              | 0.25              |          |  |
| Bacillus subtilis      | GE-EO | 320.00            | 40.00             | 0.25 (0) |  |
| ATCC 6633              | Ch    | 4.00              | 0.50              | 0.25 (S) |  |
| Escherichia coli       | GE-EO | 320.00            | 80.00             | 0.50 (0) |  |
| ATCC 25922             | Ch    | 4.00              | 1.00              | 0.50 (S) |  |
| Pseudomonas aeruginosa | GE-EO | 640.00            | 80.00             | 0.25 (S) |  |
| ATCC 27853             | Ch    | 32.00             | 4.00              |          |  |

Biological activities of essential oil from Gelsemium elegans

MICa: MIC alone; MICc: MIC combined; Chl: chloramphenicol. S, synergy (FICI  $\leq 0.5$ ).


**Table 4.** FICI values of GE-EO and Streptomycin combinations

| Microorganism          |       | $MIC_a, \mu g/mL$ | $MIC_c, \mu g/mL$ | FICI     |  |
|------------------------|-------|-------------------|-------------------|----------|--|
| Staphylococcus aureus  | GE-EO | 160.00            | 40.00             | 0.50 (5) |  |
| ATCC 6538              | SM    | 2.00              | 0.50              | 0.50 (S) |  |
| Bacillus subtilis      | GE-EO | 320.00            | 80.00             | 0.38 (S) |  |
| ATCC 6633              | SM    | 4.00              | 0.50              |          |  |
| Escherichia coli       | GE-EO | 320.00            | 80.00             | 0.38 (S) |  |
| ATCC 25922             | SM    | 4.00              | 0.50              |          |  |
| Pseudomonas aeruginosa | GE-EO | 640.00            | 40.00             | 0.31 (S) |  |
| ATCC 27853             | SM    | 8.00              | 2.00              |          |  |

SM: streptomycin.

*Cytotoxic Activity of GE-EO:* MTT assay was used to evaluate the potential cytotoxic activity of GE-EO on four human cancer cells (HepG2 liver cancer cells, MCF-7 breast cancer cells, A-549 lung cancer cells, and HCT-116 colon cancer cells) and one non-cancerous cell (human normal liver cells HL-7702) [17]. Doxorubicin was used as a positive control. As shown in Figure 1 and Table 5, GE-EO exerted a dose-dependent cytotoxic effect on all of the cell lines used in the experiment. The most susceptible to the action of GE-EO were HCT-116 cancer cell line with an IC<sub>50</sub> value of  $60.51\pm1.08 \mu g/mL$  after 48 h treatment, followed by the cell lines HL-7702 (IC<sub>50</sub> =70.04 ± 3.76 µg/mL), MCF-7 (IC<sub>50</sub> =105.35 ± 4.76 µg/mL), HepG2 (IC<sub>50</sub> =112.99 ± 6.26 µg/mL) and A-549 (IC<sub>50</sub> =159.56 ± 9.13 µg/mL). The cytotoxic activities of GE-EO could be mainly attributed to the major compounds of the essential oil such as *a*-terpineol and linalool, the cytotoxic activities of which have already been investigated previously [7, 18-20], as well as the interactions of the individual constituents. Previous studies have shown that linalool exerts cytotoxic effects by inducing cell apoptosis and cell death, inducing cancer-specific oxidative stress, and activating antitumor immunity [18, 19]. Hassan et al. reported that *a*-terpineol inhibited growth and induced cell death in various tumor cells by blocking NF-kB expression [20].

|         | GE-EO             | Doxorubicin   |
|---------|-------------------|---------------|
| HepG2   | $112.99 \pm 6.26$ | $0.46\pm0.02$ |
| MCF-7   | $105.35 \pm 4.76$ | $0.70\pm0.05$ |
| HL-7702 | $70.04 \pm 3.76$  | $0.60\pm0.13$ |
| A-549   | $159.56 \pm 9.13$ | $0.48\pm0.01$ |
| HCT-116 | $60.51 \pm 1.08$  | $0.57\pm0.03$ |



**Figure 1.** Cytotoxic activity of GE-EO (P < 0.05).

In conclusion, the major components of the essential oil distilled from the aerial parts of *Gelsemium elegans* were determined to be  $\alpha$ -terpineol (18.8%), n-pentadecanal (11.5%), methyl hexadecanoate (7.2%), n-tetradecanol (5.2%), and linalool (4.1%). The essential oil of *Gelsemium elegans* displayed potential antibacterial activities against *S. aureus*, *B. subtilis*, and *E. coli* with MICs ranging from 0.16 to 0.32 mg/mL. Furthermore, synergistic antibacterial effects were observed when *Gelsemium elegans* essential oil was combined with the antibiotics chloramphenicol or streptomycin. Moreover, the cytotoxic activity evaluation demonstrated that the *Gelsemium elegans* essential oil showed moderate cytotoxicity against cancer cell lines HCT-116, HepG2, MCF-7, and A-549. Although further *in vivo* experiments are needed, these findings showed that the essential oil obtained from *Gelsemium elegans* was a potential natural source of antibacterial and cytotoxic products.

#### **Supporting Information**

Supporting Information accompanies this paper on http://www.acgpubs.org/journal/records-of-natural-products

#### ORCID 💿

Youyi Tang: <u>0009-0007-9811-3159</u> Xinyu Hu: <u>0009-0003-9615-8370</u> Fan Xu: <u>0009-0009-5502-6316</u> Xiang Xing: <u>0000-0003-0951-5708</u>

#### References

- [1] D. J. Yu (1996). Flora of China, Science Press, Beijing. 15, p. 329.
- [2] Editorial Committee of Chinese Materia Medica (2000). In Chinese Materia Medica, Shanghai Science & Technology, Shanghai. 6: pp. 213–215.
- [3] C. Rujjanawate, D. Kanjanapothi and A. Panthong (2003). Pharmacological effect and toxicity of alkaloids from *Gelsemium elegans* Benth, *J. Ethnopharmacol* **89**, 91-95.
- [4] G. L. Jin, Y. P. Su, M. Liu, Y. Xu, J. Yang, K. J. Liao and C. X. Yu (2014). Medicinal plants of the genus *Gelsemium* (Gelsemiaceae, Gentianales)—A review of their phytochemistry, pharmacology, toxicology and traditional use, *J. Ethnopharmacol.* 152, 33-52.
- [5] L. Wang, J. F. Wang, X. Mao, L. Jiao and X. J. Wang (2017). Gelsedine-type oxindole alkaloids from *Gelsemium elegans* and the evaluation of their cytotoxic activity, *Fitoterapia* **120**, 131-135.

#### Biological activities of essential oil from Gelsemium elegans

- [6] L. Li, C. Shi, Z. Yin, R. Jia, L. Peng, S. Kang and Z. Li (2014). Antibacterial activity of α-terpineol may induce morphostructural alterations in *Escherichia coli*, *Braz. J. Microbiol.* **45**, 1409-1413.
- [7] C. Khaleel, N. Tabanca and G. Buchbauer (2018). α-Terpineol, a natural monoterpene: A review of its biological properties, *Open Chem.* 16, 349-361.
- [8] R. P. Adams (2017). Identification of essential oil components by gas chromatography/mass spectrometry. 5th Ed. Texensis Publishing Gruver, TX USA.
- [9] L. T. Huong, D. T. M. Chau, D.N. Dai and I. A. Ogunwande (2022). essential oils of lauraceae: constituents and antimicrobial activity of *Dehaasia cuneata* (blume) blume and *Caryodaphnopsis tonkinensis* (lecomte) airy-shaw from Vietnam, *Rec. Nat. Prod.*16, 477-482.
- [10] P. J. Linstrom and W.G. Mallard (2014). NIST Chemistry WebBook, NIST Standard Reference Database Number 69. (http://webbook.nist.gov).
- [11] V. I. Babushok, P. J. Linstrom and I. G. Zenkevich (2011). Retention indices for frequently reported compounds of plant essential oils, *J. Phys. Chem. Ref. Data*. **40**, 043101.
- [12] M. A. Wikler, Performance standards for antimicrobial disk susceptibility tests: approved standard. Clinical and Laboratory Standards Institute, 2006.
- [13] C. L. Queiroga, M. C. Teixeira Duarte, R. B. Baesa and P. M. de Magalhães (2007). Linalool production from the leaves of *Bursera aloexylon* and its antimicrobial activity, *Fitoterapia* **78**, 327-328.
- [14] R. C. Beier, J. A. Byrd II, L. F. Kubena, M. E. Hume, J. L. McReynolds, R. C. Anderson and D. J. Nisbet (2014). Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: Effects on poultry, *Poultry Sci.* 93, 267-272.
- [15] A. Herman, K. Tambor and A. Herman (2016). Linalool affects the antimicrobial efficacy of essential oils, *Curr. Microbiol.* **72**, 165-172.
- [16] X. Liu, J. Cai, H. Chen, Q. Zhong, Y. Hou, W. Chen and W. Chen (2020). Antibacterial activity and mechanism of linalool against *Pseudomonas aeruginosa*, *Microb. Pathog.* 141, 103980.
- [17] R. L. Wang, Y. Gao and X. Xing (2020). Analysis of chemical composition and assessment of antioxidant, cytotoxic and synergistic antibacterial activities of essential oils from different plant parts of *Piper boehmeriifolium*, *Chem. Biodivers*. 17, e2000245.
- [18] M. Y. Chang and Y. L Shen (2014). Linalool exhibits cytotoxic effects by activating antitumor immunity, *Molecules* 19, 6694-6706.
- [19] K. Iwasaki, Y. W. Zheng, S. Murata, H. Ito, K. Nakayama, T. Kurokawa, N. Sano, T. Nowatari, M. O. Villareal, Y. N. Nagano, H. Isoda, H. Matsui and N. Ohkohchi (2016). Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer, *World J. Gastroenterol.* 22, 9765.
- [20] S. B. Hassan, H. Gali-Muhtasib, H. Göransson and R. Larsson (2010). Alpha terpineol: a potential anticancer agent which acts through suppressing NF-κB signalling, *Anticancer Res.* **30**, 1911-1919.

