Supporting Information

Cephalounei A, a New Cephalotaxus Alkaloid from the Powdered Stems of Cephalotaxus fortune Hook. f

Kang-Kang Mei¹, Guo-Kai Wang², He-Ping Cai¹ and Zhi-Hong Luo*¹

¹Department of Pharmacy & Anhui Provincial Children’s Hospital, Hefei, Anhui 230051, P. R. China

²School of Pharmacy & Anhui University of Chinese Medicine; Anhui Innovative Team from Colleges for Scientific Research’s Platform-The Innovative Team in Researching the Key Technologies concerning the Integration of Processing Chinese Medicine Decoction Pieces in Producing Area, Hefei, Anhui 230012, P. R. China

Table of Contents

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1:</td>
<td>¹H NMR (600 MHz, CD₃OD) of compound 1 (Cephalounei A)</td>
<td>2</td>
</tr>
<tr>
<td>Figure S2:</td>
<td>¹³C NMR (150 MHz, CD₃OD) of compound 1 (Cephalounei A)</td>
<td>3</td>
</tr>
<tr>
<td>Figure S3:</td>
<td>HMBC of compound 1 (Cephalounei A)</td>
<td>3</td>
</tr>
<tr>
<td>Figure S4:</td>
<td>HSQC of compound 1 (Cephalounei A)</td>
<td>4</td>
</tr>
<tr>
<td>Figure S5:</td>
<td>¹H–¹H COSY of compound 1 (Cephalounei A)</td>
<td>4</td>
</tr>
<tr>
<td>Figure S6</td>
<td>¹H–¹H ROESY of compound 1 in CD₃OD</td>
<td>5</td>
</tr>
<tr>
<td>Figure S7:</td>
<td>IR of compound 1 (Cephalounei A)</td>
<td>7</td>
</tr>
<tr>
<td>Figure S8:</td>
<td>HRESIMS of compound 1 (Cephalounei A)</td>
<td>7</td>
</tr>
<tr>
<td>Figure S9:</td>
<td>UV of compound 1 (Cephalounei A)</td>
<td>8</td>
</tr>
<tr>
<td>Figure S10:</td>
<td>Optical Rotation of compound 1 (Cephalounei A)</td>
<td>9</td>
</tr>
<tr>
<td>Figure S11:</td>
<td>Low resolution mass spectrometry of compound 1 (Cephalounei A)</td>
<td>9</td>
</tr>
<tr>
<td>S12:</td>
<td>ECD computational details of compound 1 (Cephalounei A)</td>
<td>10-11</td>
</tr>
</tbody>
</table>

*Corresponding author: E-Mail: ahsetyyjk@163.com; Phone:086-551-62237597 Fax: 086-551-62237597
Figure S1. 1H NMR of compound 1 in CD$_3$OD (600 MHz)
Figure S2. 13C NMR of compound 1 in CD$_3$OD (150 MHz)

Figure S3. HMBC of compound 1 in CD$_3$OD
Figure S4. HSQC of compound 1 in CD$_3$OD

Figure S5. 1H–1H COSY of compound 1 in CD$_3$OD
Figure S6. 1H–1H ROESY of compound 1 in CD$_3$OD
Figure S7. IR of compound 1
Figure S8. HRESIMS of compound 1
Figure S9. UV of compound 1
Figure S10 Optical Rotation of compound 1

Figure S11. low resolution mass spectrometry of compound 1
S12: ECD computational details of compound 1 (Cephalounei A)

A conformation searches based on molecular mechanics with MMFF94S force fields were performed for compound 1 which gave nine stable conformers [1-2]. Selected six conformers with distributions higher than 1% were further optimized by density functional theory method at the B3LYP/6-31G(d,p) level in Gaussian 09 program package [3], leading to two minimum geometries, which was further checked by frequency calculation and resulted in no imaginary frequencies. The ECD was calculated using TDDFT-B3LYP/6-311G(2d, p) of theory on B3LYP/6-31G(d, p) optimized geometry. The calculated ECD curve for 1 and weighted ECD were all generated using SpecDis 1.64 with $\sigma = 0.3$ ev, and UV shift 5 nm [4].

Two optimized conformers of 1(2R, 3S, 6S)

![Conformer 1](image1)

46.28% 37.12%

![Conformer 2](image2)

0.95% 0.95%

![Conformer 3](image3)

11.33% 3.38%

References:

