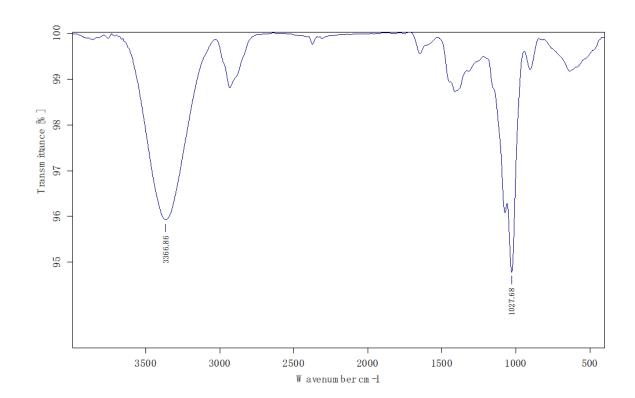
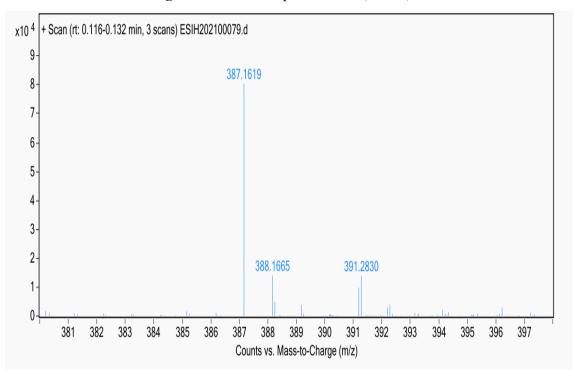
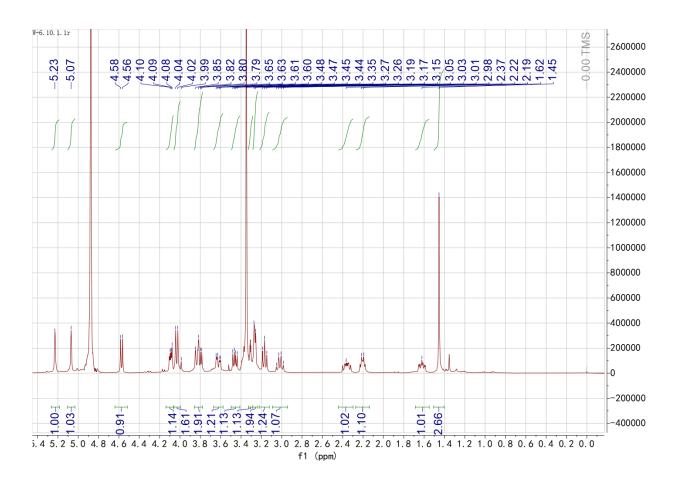
Supplementary Data

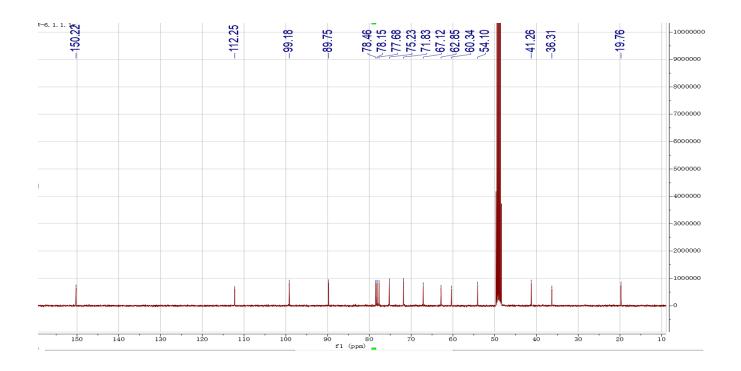

Rec. Nat. Prod. 16:4 (2022) 393-397

A New Iridoid Glycoside Isolated from *Valeriana officinalis* L. Guoqing Wu*, Zilong Zhang*, Hao Fan, Dongdong Zhang, Wenli Huang, Huawei Zhang, Yuze Li* and Xiaomei Song*


School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China

*These authors contributed equally to this work


Table of Contents	Page		
Figure S1: The IR spectrum of 1 (in KBr)	2		
Figure S2: The HR-ESI-MS spectrum of 1 (in MeOH)	2 3		
Figure S3: The ¹ H NMR spectrum of 1 (in MeOD)			
Figure S4: The ¹³ C NMR spectrum of 1 (in MeOD)	4		
Figure S5: The DEPT spectrum of 1 (in MeOD)	4		
Figure S6: The HSQC spectrum of 1 (in MeOD)	4 5 5		
Figure S7: The HSQC spectrum of 1 (in MeOD)(From δ_C -10 ppm to δ_C 160 ppm)	5		
Figure S8: The HMBC spectrum of 1 (in MeOD)	6		
Figure S9: The HMBC spectrum of 1 (in MeOD)(From $\delta_{\rm C}$ 20 ppm to $\delta_{\rm C}$ 120 ppm)	7		
Figure S10: The HMBC spectrum of 1 (in MeOD)(From $\delta_{\rm C}$ 100 ppm to $\delta_{\rm C}$ 180 ppm)	8		
Figure S11: The ¹ H- ¹ H COSY spectrum of 1 (in MeOD)	9		
Figure S12: The NOESY spectrum of 1 (in MeOD)	10		
S1:Search report of SciFinder of 1			
Table 1: ¹³ C NMR data for compound 1 and similar compound	12		
Figure S13: The ¹ H NMR spectrum of 2 (in MeOD)	13		
Figure S14: The ¹³ C NMR spectrum of 2 (in MeOD)			
Figure S15: The ¹ H NMR spectrum of 3 (in MeOD)			
Figure S16: The ¹³ C NMR spectrum of 3 (in MeOD)	14		
Figure S17: The ¹ H NMR spectrum of 4 (in MeOD)	15		
Figure S18: The ¹³ C NMR spectrum of 4 (in MeOD)	15		
Figure S19: The ¹ H NMR spectrum of 5 (in DMSO- <i>d</i> ₆)	16		
Figure S20: The ¹³ C NMR spectrum of 5 (in DMSO- <i>d</i> 6)	17		
Figure S21: The ¹ H NMR spectrum of 6 (in MeOD)	18		
Figure S22: The ¹³ C NMR spectrum of 6 (in MeOD)	19		
S2:Spectroscopic Data of 2-6			


Figure S1: The IR spectrum of 1 (in KBr)

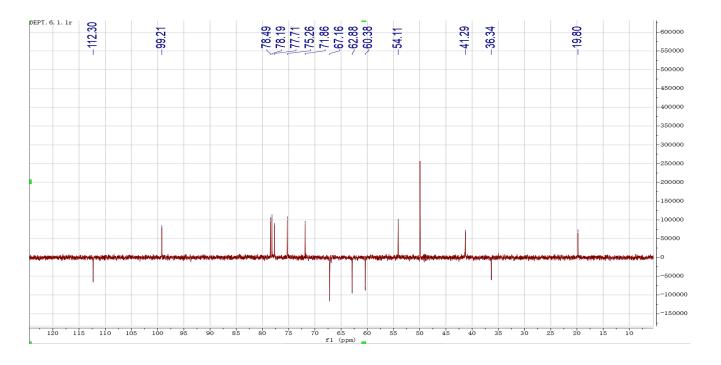

Figure S2: The HR-ESI-MS spectrum of **1** (in MeOH)

Figure S3: The ¹H NMR spectrum of **1** (in MeOD)

Figure S4: The ¹³C NMR spectrum of **1** (in MeOD)

Figure S5: The DEPT spectrum of **1** (in MeOD)

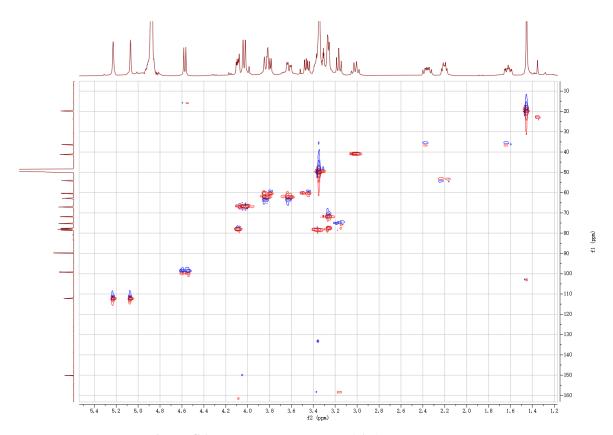
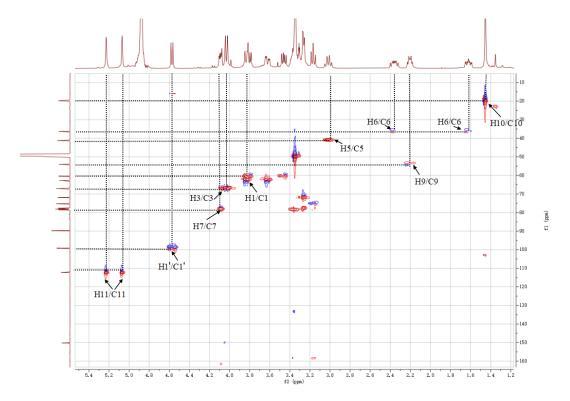
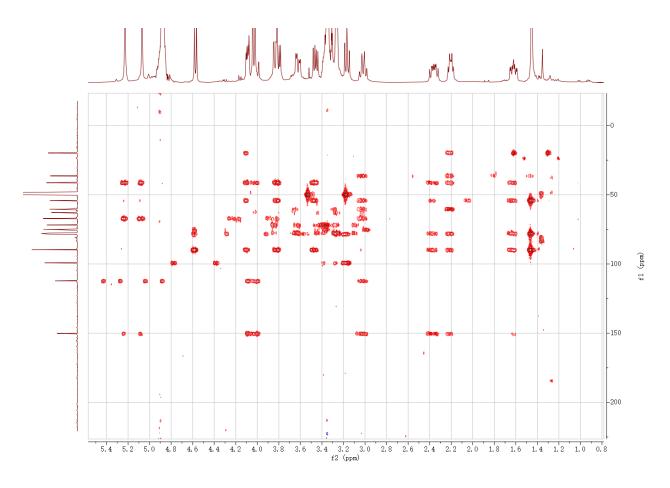
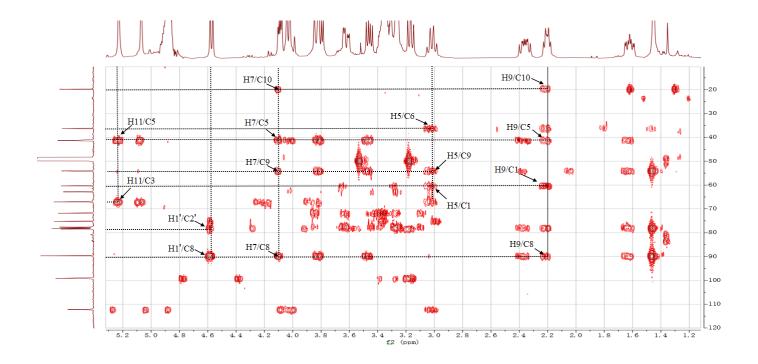
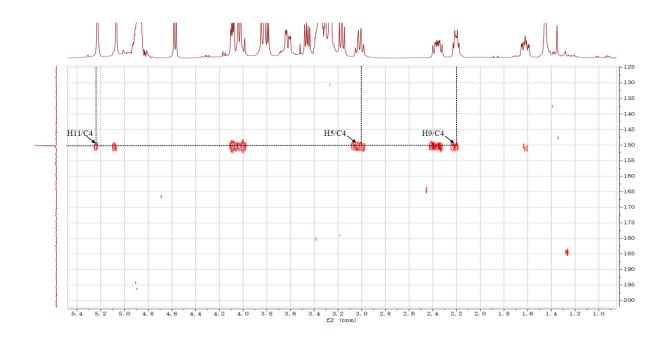



Figure S6: The HSQC spectrum of 1 (in MeOD)

Figure S7: The HSQC spectrum of **1** (in MeOD) (From $\delta_{\rm C}$ 90 ppm to $\delta_{\rm C}$ 160 ppm)

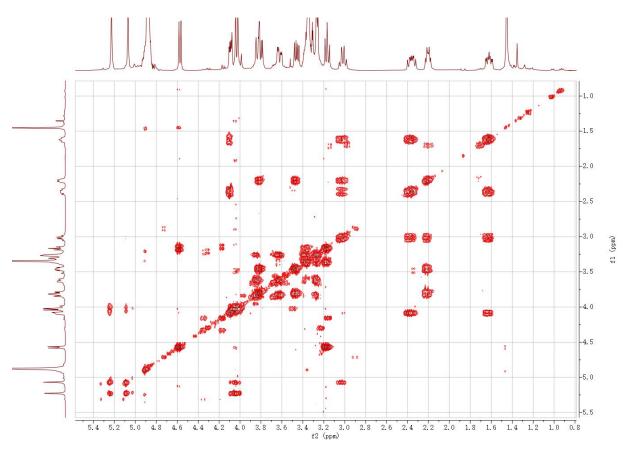
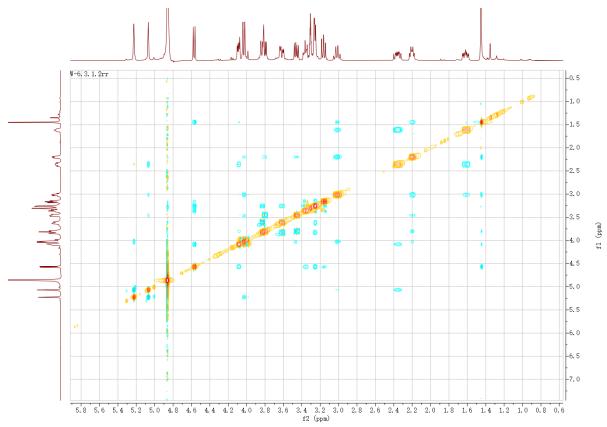
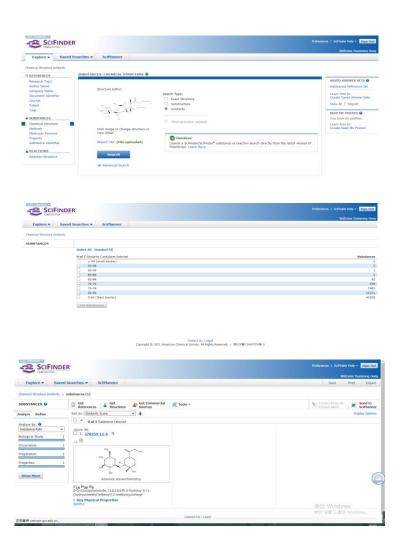
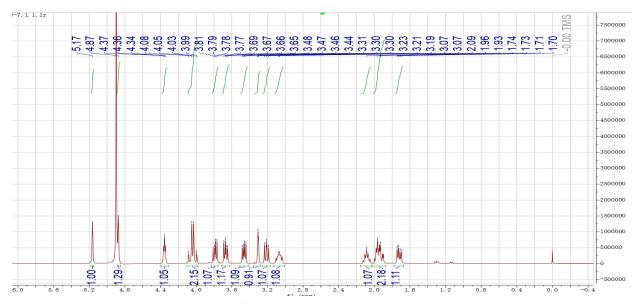

Figure S8: The HMBC spectrum of 1 (in MeOD)

Figure S9: The HMBC spectrum of **1** (in MeOD) (From $\delta_{\rm C}$ 20ppm to $\delta_{\rm C}$ 120 ppm)

Figure S10: The HMBC spectrum of **1** (in MeOD) (From $\delta_{\rm C}$ 125ppm to $\delta_{\rm C}$ 200 ppm

Figure S11: The ¹H-¹H COSY spectrum of **1** (in MeOD)


Figure S12: The NOESY spectrum of 1 (in MeOD)

S1: Search report of SciFinder of **1**

Table 1: 13 C NMR data for compound 1 and similar compound

	1	3	similar compound
Position	$oldsymbol{\delta}_{ ext{C}}$	$oldsymbol{\delta}_{ ext{C}}$	$\delta_{ m C}$
1	60.4	61.0	70.4
2	-	-	84.1
3	67.1	67.5	33.9
4	150.2	150.6	34.4
5	41.3	41.5	27.6
6	36.3	38.9	35.3
7	78.2	81.0	28.3
8	89.8	83.5	156.1
9	54.1	51.3	107.0
10	19.8	23.5	64.8
11	112.3	112.4	-
1'	99.2		106.3
2'	75.2		75.7
3'	77.7		78.7
4'	71.8		71.7
5'	78.5		78.3
6'	62.9		62.9

Figure S13: The ¹H NMR spectrum of **2** (in MeOD)

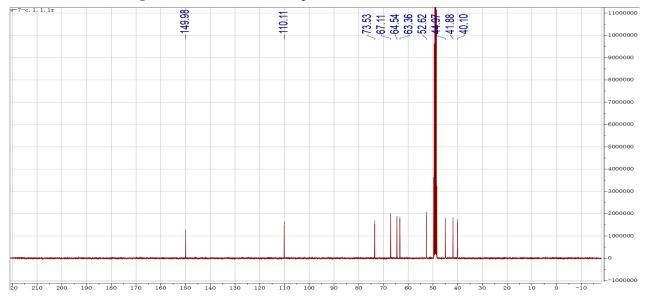
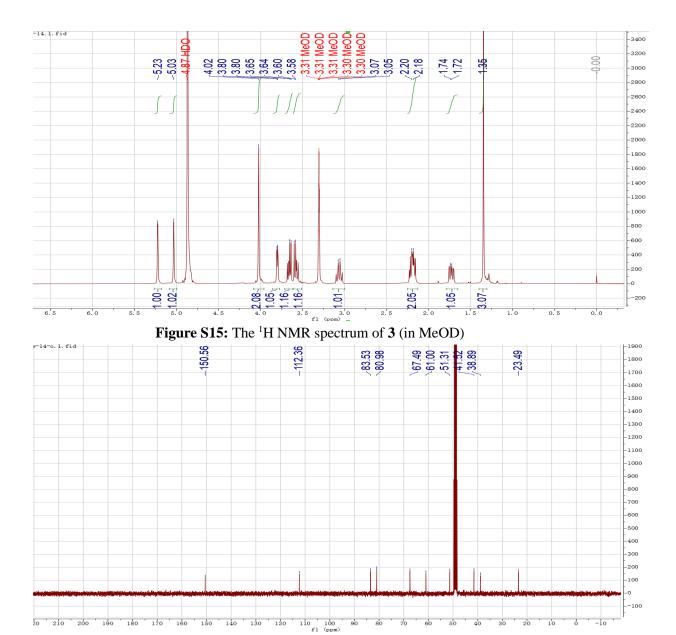
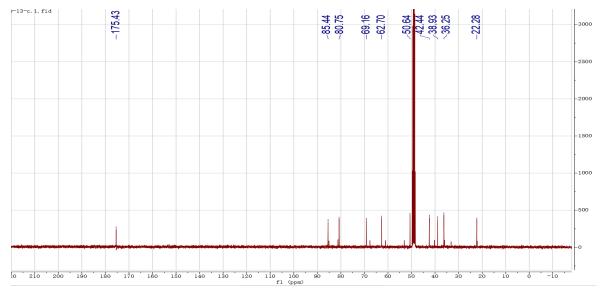
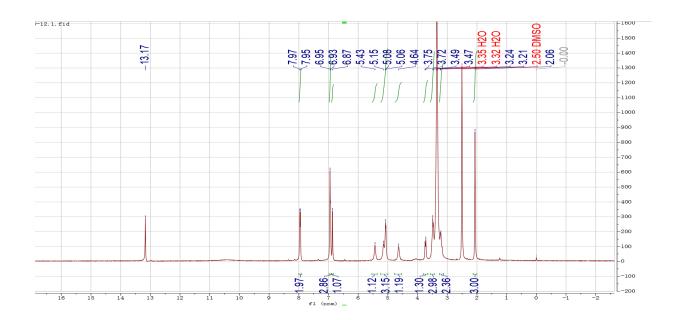
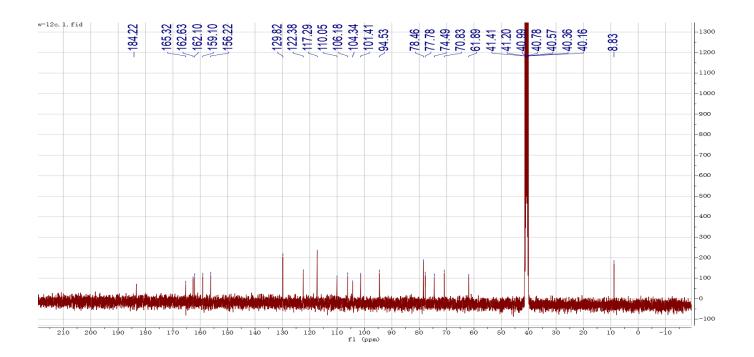
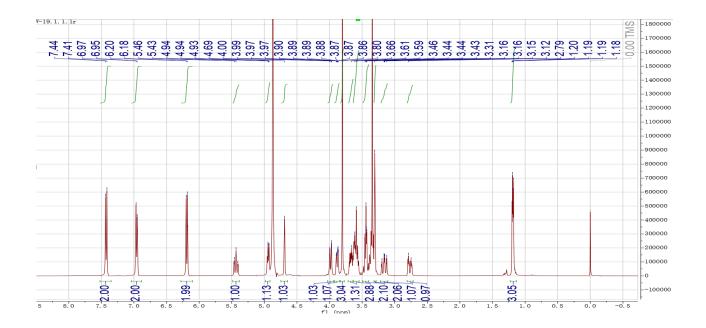



Figure S14: The ¹³C NMR spectrum of 2 (in MeOD)

Figure S16: The 13 C NMR spectrum of **3** (in MeOD)

Figure S17: The ¹H NMR spectrum of 4 (in MeOD)


Figure S18: The ¹³C NMR spectrum of 4 (in MeOD)

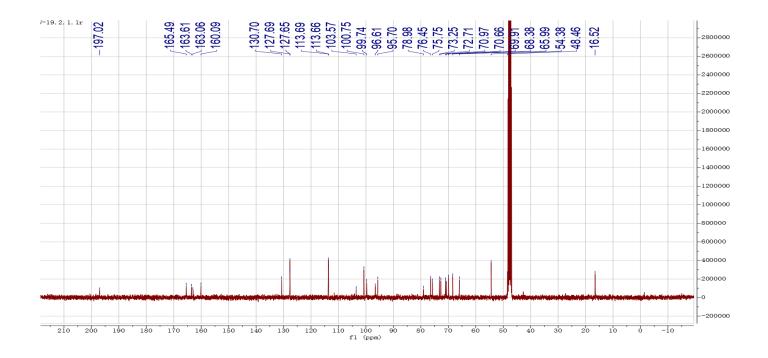

Figure S19: The 1 H NMR spectrum of **5** (in DMSO- d_6)

Figure S20: The 13 C NMR spectrum of **5** (in DMSO- d_6)

Figure S21: The ¹H NMR spectrum of **6** (in MeOD)

Figure S22: The ¹H NMR spectrum of **6** (in MeOD)

S2: Spectroscopic Data of 2-6

Dioscoridin A (*2*):, C₁₀H₁₈O₄, colorless oil, $\left[\alpha\right]_D^{27} = +8.0$ (c 0.1, MeOH), HR-ESI-MS m/z 225.1095 ([M+Na]⁺). ¹H-NMR (400 MHz, MeOD) δ_H : 5.17 (1H, s, H-11a), 4.87 (1H, s, H-11b), 3.46 (1H, dd, J = 10.6, 6.1 Hz, H-1a), 3.21 (1H, dd, J = 10.6, 8.2 Hz, H-1b), 4.06 (2H, dd, J = 14.0, 8.6 Hz, H-3), 3.07 (1H, m, H-5), 1.92 (1H, dd, J = 13.0, 4.0 Hz, H-6a), 1.72 (1H, dd, J = 13.0, 6.1 Hz, H-6b), 4.36 (1H, t, J = 4.6 Hz, H-7), 1.97 (1H, m, H-8), 2.09 (1H, m, H-9), 3.79 (1H, dd, J = 10.6, 6.9 Hz, H-10a), 3.67 (1H, dd, J = 10.6, 6.7 Hz, H-10b). ¹³C-NMR (100 MHz, MeOD) δ_C : 64.5 (C-1), 67.1 (C-3), 149.9 (C-4), 41.9 (C-5), 40.1 (C-6), 73.5 (C-7), 52.6 (C-8), 45.0 (C-9), 63.4 (C-10), 110.1 (C-11).

Jatamanin J (*3*): C₁₀H₁₈O₄, yellow oil, $\left[\alpha\right]_D^{20}$ +87.0 (c 0.36, MeOH), HR-ESI-MS m/z 225.1102 ([M+Na]⁺). ¹H-NMR (400 MHz, MeOD) δ_H : 3.66 (1H, dd, J=11.1, 6.3 Hz, H-1a), 3.58 (1H, dd, J=11.1, 7.4 Hz, H-1b), 4.02 (2H, s, H-3), 3.06 (1H, dd, J=10.4, 7.9 Hz, H-5), 2.19 (1H, ddd, J=13.2, 9.6, 4.8 Hz, H-6a), 1.72 (1H, ddd, J=13.2, 7.9, 1.8 Hz, H-6b), 3.80 (1H, dd, J=5.2, 1.8 Hz, H-7), 2.19 (1H, ddd, J=10.2, 7.2, 6.0 Hz, H-9), 1.34 (3H, s, H-10), 5.23 (1H, s, H-11a), 5.03 (1H, s, H-11b). ¹³C-NMR (100 MHz, MeOD) δ_C : 61.0 (C-1), 67.5 (C-3), 150.6 (C-4), 41.5 (C-5), 38.9 (C-6), 81.0 (C-7), 83.5 (C-8), 51.3 (C-9), 23.5 (C-10), 112.4 (C-11).

Longiflorone (4): C₁₀H₁₆O₅, yellow oil, $\left[\alpha\right]_D^{20}$ +61.9 (c 1.1, MeOH), DCI-MS m/z 234.1 ([M+NH₃+H]⁺). ¹H-NMR (400 MHz, MeOD) δ_H : 4.54 (1H, dd, J = 10.9, 2.9 Hz, H-3a), 4.19 (1H, dd, J = 10.9, 5.7 Hz, H-3b), 1.76 (1H, m, H-4), 2.52 (1H, m, H-5), 2.05 (1H, ddd, J = 13.4, 9.4, 4.0 Hz, H-6a), 1.93 (1H, dd, J = 13.4, 8.3 Hz, H-6b), 3.71 (1H, d, J = 3.9 Hz, H-7), 2.86 (1H, d, J = 10.9 Hz, H-9), 1.49 (3H, s, H-10), 3.59 (1H, dd, J = 11.2, 5.4 Hz, H-11a), 3.45 (1H, dd, J = 11.2, 8.4 Hz, H-11b). ¹³C-NMR (100 MHz, MeOD) δ_C : 175.4 (C-1), 69.2 (C-3), 42.4 (C-4), 36.2 (C-5), 38.9 (C-6), 80.8 (C-7), 85.4 (C-8), 50.6 (C-9), 22.3 (C-10), 62.7 (C-11).

Apigenin-8-O-β-D-glucopyranoside (*5*): C₂₂H₂₃O₁₀, colorless oil, $\left[\alpha\right]_D^{20}$ -115.8 (c 0.41, MeOH), HR-FAB-MS m/z 447.1285 ([M+H]⁺). ¹H-NMR (400 MHz, MeOD) $\delta_{\rm H}$: 6.87 (1H, s, H-3), 7.96 (1H, d, J = 8.4 Hz, H-6), 7.96 (1H, d, J = 8.4 Hz, H-8), 6.93 (1H, d, J = 2.1 Hz, H-2'), 6.94 (1H, d, J = 7.3 Hz, H-5'), 6.94 (1H, dd, J = 7.3, 2.1 Hz, H-6'), 5.08 (1H, d, J = 7.5 Hz, H-1"), 4.64 (1H, m, H-2"), 3.75 (1H, m, H-3"), 3.49 (1H, m, H-4"), 3.49 (1H, m, H-5"), 3.24 (2H, m, H-6"), 2.06 (3H, s, Me-3'). ¹³C-NMR (100 MHz, MeOD) $\delta_{\rm C}$: 162.6 (C-2), 106.2 (C-3), 184.2 (C-4), 159.1 (C-5), 104.3 (C-6), 94.5 (C-7), 165.3 (C-8), 162.1 (C-9), 110.1 (C-10), 129.8 (C-1'), 117.3 (C-2'), 129.8 (C-3'), 156.2 (C-4'), 117.3 (C-5'), 122.4 (C-6'), 101.4 (C-1"), 77.8 (C-2"), 74.5 (C-3"), 70.8 (C-4"), 78.5 (C-5"), 61.9 (C-6"), 8.8 (3'-CH₃).

Isosakuranetin-5-O-rutinoside (6): C₂₈H₃₄O₁₄, white needles, $\left[\alpha\right]_D^{20}$ -105.3 (c 0.16, MeOH), FAB-MS m/z 594.2 ([M]⁺). ¹H-NMR (400 MHz, MeOD) $\delta_{\rm H}$: 7.43 (2H, d, J = 8.7 Hz, H-2', 6'), 6.96 (2H, d, J = 8.8 Hz, H-3', 5'), 6.20 (1H, d, J = 2.2 Hz, H-6), 6.18 (1H, d, J = 2.2 Hz, H-8), 5.57 (1H, dd, J = 11.9, 2.9 Hz, H-2), 4.96 (1H, d, J = 7.5 Hz, H-1"), 4.51 (1H, brs, H-1"'), 3.80 (3H, s, 4'-OCH₃), 1.19 (3H, m, H-6"'). ¹³C-NMR (100 MHz, MeOD) $\delta_{\rm C}$: 78.9 (C-2), 48.5 (C-3), 197.0 (C-4), 163.6 (C-5), 96.6 (C-6), 165.5 (C-7), 95.7 (C-8), 163.1 (C-9), 103.6 (C-10), 130.7 (C-1'), 127.6 (C-2'), 113.6 (C-3'), 160.1 (C-4'), 113.7 (C-5'), 127.7 (C-6'), 100.7 (C-1"'), 73.2 (C-2"), 75.8 (C-3"), 69.9 (C-4"), 76.4 (C-5"), 66.0 (C-6"), 99.7 (C-1"'), 70.9 (C-2"'), 70.7 (C-3"'), 72.7 (C-4"'), 68.4 (C-5"'), 16.5 (C-6"'), 54.4 (4'-OCH₃).