Supporting Information

Org. Commun. 15:2 (2022) 96-107

Synthesis of new heterocycles via

methylenebis(2-(2-methoxyphenyl)thiazolidin-4-one)

as potential anticancer agents

Avula Srinivas¹ and Sonti Reddy Rajitha²

¹Department of ChemistryVaagdevi Degree and PG College, Kishanpura, Hanamkonda,

Telangana-506001, India

²Department of Chemistry Carrier point University, Kota, Rajasthan, India

Table of Contents	Page
Figure S1: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 2a	2
Figure S2: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 2b	3
Figure S3: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 2c	4
Figure S4: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 2d	5
Figure S5: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 2e	6
Figure S6: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 2f	7
Figure S7: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 2g	8
Figure S8: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 3a	9
Figure S9: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 3b	10
Figure S10: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 3c	11
Figure S11: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 3d	12
Figure S12: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 3e	13
Figure S13: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 3f	14
Figure S14: ¹ H-NMR (300 MHz, CDCl ₃) spectrum of 3g	15

4.0 3.5 0.(7.5 7.0 6.0 4.5 3.0 2.5 9.5 9.0 6.5 5.5 5.0 2.0 1.5 1.0 0.5 8.5 8.0

Figure S1: ¹H-NMR (300 MHz, CDCl₃) spectrum of 2a

Figure S2: ¹H-NMR (300 MHz, CDCl₃) spectrum of 2b

Figure S3: ¹H-NMR (300 MHz, CDCl₃) spectrum of 2c

Figure S4: ¹H-NMR (300 MHz, CDCl₃) spectrum of 2d

Figure S5: ¹H-NMR (300 MHz, CDCl₃) spectrum of 2e

Figure S6: ¹H-NMR (300 MHz, CDCl₃) spectrum of 2f

Figure S8: ¹H-NMR (300 MHz, CDCl₃) spectrum of 3a

Figure S9: ¹H-NMR (300 MHz, CDCl₃) spectrum of 3b

Figure S10: ¹H-NMR (300 MHz, CDCl₃) spectrum of 3c

Figure S13: ¹H-NMR (300 MHz, CDCl₃) spectrum of 3f

 $\ensuremath{\mathbb{C}}$ 2022 ACG Publications. All rights reserved.

Figure S14: ¹H-NMR (300 MHz, CDCl₃) spectrum of 3g