### **Supporting Information**

## Rec. Nat. Prod. 17:2 (2023) 329-334

### Chemical Constituents of Tectus maximus Koch, 1844

# Nguyen Trong Dan<sup>1</sup>, Le Thi Giang<sup>2</sup>, Cu Nguyen Dinh<sup>1</sup>, Truong Ba Hai<sup>1</sup>, Nguyen Dang Hoi<sup>1</sup>, Vu Thi Loan,<sup>1</sup> Dan Thi Thuy Hang,<sup>3</sup> Nguyen Xuan Nhiem,<sup>3,4</sup> Bui Huu Tai,<sup>3,4</sup> and Phan Van Kiem<sup>3,4\*</sup>

<sup>1</sup>Vietnam - Russia Tropical Center, 63 Nguyen Van Huyen, Cau Giay, Hanoi, Vietnam

<sup>2</sup>Thai Nguyen University of Medicine and Pharmacy, 284 Luong Ngoc Quyen Street, Thai Nguyen City, Vietnam

<sup>3</sup>Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

<sup>4</sup>Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

|             | Table of Contents                                                                | Page |
|-------------|----------------------------------------------------------------------------------|------|
| Figure S1:  | HR-ESI-MS of compound 1                                                          | 3    |
| Figure S2:  | <sup>1</sup> H NMR spectrum of compound <b>1</b> in DMSO- $d_6$                  | 3    |
| Figure S3:  | Extended 1H NMR spectrum of compound $1$ in DMSO- $d_6$                          | 4    |
| Figure S4:  | <sup>13</sup> C NMR spectrum of compound 1 in DMSO- $d_6$                        | 4    |
| Figure S5:  | HSQC spectrum of compound 1 in DMSO- $d_6$                                       | 5    |
| Figure S6:  | HMBC spectrum of compound 1 in DMSO- $d_6$                                       | 6    |
| Figure S7:  | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>1</b> in DMSO- $d_6$ | 7    |
| Figure S8:  | NOESY spectrum of compound 1 in DMSO- $d_6$                                      | 8    |
| Figure S9:  | HR-ESI-MS of compound 2                                                          | 9    |
| Figure S10: | <sup>1</sup> H NMR spectrum of compound <b>2</b> in DMSO- $d_6$                  | 9    |
| Figure S11: | Extended 1H NMR spectrum of compound 2 in DMSO- $d_6$                            | 10   |
| Figure S12: | <sup>13</sup> C NMR spectrum of compound <b>2</b> in DMSO- $d_6$                 | 10   |
| Figure S13: | HSQC spectrum of compound 2 in DMSO- $d_6$                                       | 11   |
| Figure S14: | HMBC spectrum of compound $2$ in DMSO- $d_6$                                     | 12   |
| Figure S15: | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>2</b> in DMSO- $d_6$ | 13   |
| Figure S16: | NOESY spectrum of compound $2$ in DMSO- $d_6$                                    | 14   |
| Figure S17: | <sup>1</sup> H NMR spectrum of compound <b>3</b> in DMSO- $d_6$                  | 15   |
| Figure S18: | <sup>13</sup> C NMR spectrum of compound <b>3</b> in DMSO- $d_6$                 | 16   |
| Figure S19: | <sup>1</sup> H NMR spectrum of compound <b>4</b> in DMSO- $d_6$                  | 17   |
| Figure S20: | <sup>13</sup> C NMR spectrum of compound <b>4</b> in DMSO- $d_6$                 | 18   |
| Figure S21: | HR-ESI-MS of compound 5                                                          | 19   |
| Figure S22: | <sup>1</sup> H NMR spectrum of compound <b>5</b> in DMSO- $d_6$                  | 20   |
| Figure S23: | <sup>13</sup> C NMR spectrum of compound <b>5</b> in DMSO- $d_6$                 | 21   |
| Figure S24: | HR-ESI-MS of compound 6                                                          | 22   |
| Figure S25: | <sup>1</sup> H NMR spectrum of compound <b>6</b> in DMSO- $d_6$                  | 22   |
| Figure S26: | Extended <sup>1</sup> H NMR spectrum of compound <b>6</b> in DMSO- $d_6$         | 23   |
| Figure S27: | <sup>13</sup> C NMR spectrum of compound <b>6</b> in DMSO- $d_6$                 | 24   |
| Figure S28: | HR-ESI-MS of compound 7                                                          | 25   |
| Figure S29: | <sup>1</sup> H NMR spectrum of compound 7 in DMSO- $d_6$                         | 25   |
| Figure S30: | Extended <sup>1</sup> H NMR spectrum of compound 7 in DMSO- $d_6$                | 26   |
| Figure S31: | <sup>13</sup> C NMR spectrum of compound 7 in DMSO- $d_6$                        | 27   |

| Figure S32: | HR-ESI-MS of compound 8                                                                    | 28 |
|-------------|--------------------------------------------------------------------------------------------|----|
| Figure S33: | <sup>1</sup> H NMR spectrum of compound 8 in DMSO- $d_6$                                   | 28 |
| Figure S34: | Extended <sup>1</sup> H NMR spectrum of compound 8 in DMSO- $d_6$                          | 29 |
| Figure S35: | <sup>13</sup> C NMR spectrum of compound 8 in DMSO- $d_6$                                  | 30 |
| Figure S36: | HR-ESI-MS of compound 9                                                                    | 31 |
| Figure S37: | <sup>1</sup> H NMR spectrum of compound <b>9</b> in CDCl <sub>3</sub>                      | 31 |
| Figure S38: | Extended <sup>1</sup> H NMR spectrum of compound <b>9</b> in CDCl <sub>3</sub>             | 32 |
| Figure S39: | <sup>13</sup> C NMR spectrum of compound <b>9</b> in CDCl <sub>3</sub>                     | 33 |
| Figure S40: | HSQC spectrum of compound 9 in CDCl <sub>3</sub>                                           | 34 |
| Figure S41: | HMBC spectrum of compound 9 in in CDCl <sub>3</sub>                                        | 35 |
| Figure S42: | Extended HMBC spectrum of compound 9 in in CDCl <sub>3</sub>                               | 36 |
| Figure S43: | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>9</b> in CDCl <sub>3</sub>     | 37 |
| Figure S44: | <sup>1</sup> H NMR spectrum of compound <b>10</b> in CDCl <sub>3</sub>                     | 38 |
| Figure S45: | <sup>13</sup> C NMR spectrum of compound <b>10</b> in CDCl <sub>3</sub>                    | 39 |
| <b>S1</b> : | Experimental: The NMR data of compounds 3-10                                               | 40 |
| Table S1:   | $^{13}$ C NMR data for compounds <b>1-8</b> in DMSO-d <sub>6</sub> and reference compounds | 42 |
| Table S2:   | NMR spectroscopic data for 9 and 10 (in CDCl <sub>3</sub> ) and reference compounds        | 43 |
| <b>S2:</b>  | Cytotoxicity Assay                                                                         | 44 |







Figure S2: <sup>1</sup>H NMR spectrum of compound 1 in DMSO-*d*<sub>6</sub>



Figure S4: <sup>13</sup>C NMR spectrum of compound 1 in DMSO-*d*<sub>6</sub>



Figure S5: HSQC spectrum of compound 1 in DMSO-*d*<sub>6</sub>





**Figure S7:** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **1** in DMSO-*d*<sub>6</sub>



Figure S8: NOESY spectrum of compound 1 in DMSO-*d*<sub>6</sub>



|   | Formula (M)   | Score (MFG $\nabla$ | Mass     | Mass (MFG) | m/z (Calc) | Diff (ppm) | DBE | m/z      |
|---|---------------|---------------------|----------|------------|------------|------------|-----|----------|
| ► | C12 H14 N4 O6 | 99.43               | 310.0909 | 310.0913   | 311.0986   | 1.32       | 8   | 311.0982 |
|   | C11 H18 O10   | 97.16               | 310.0909 | 310.09     | 311.0973   | -2.99      | 3   | 311.0982 |
|   | C13 H10 N8 O2 | 90.64               | 310.0909 | 310.0927   | 311.0999   | 5.64       | 13  | 311.0982 |

Figure S9: HRESIMS spectrum of compound 2



Figure S10: <sup>1</sup>H NMR spectrum of compound 2 in DMSO-*d*<sub>6</sub>



Figure S11: Extended <sup>1</sup>H NMR spectrum of compound 2 in DMSO-*d*<sub>6</sub>



© 2022 ACG Publications. All rights reserved.



Figure S12: <sup>13</sup>C NMR spectrum of compound 2 in DMSO-*d*<sub>6</sub>

© 2022 ACG Publications. All rights reserved.



Figure S13: HSQC spectrum of compound 2 in DMSO-*d*<sub>6</sub>



Figure S14: HMBC spectrum of compound 2 in DMSO-d<sub>6</sub>

Figure S15: <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound 2 in DMSO-*d*<sub>6</sub>



Figure S16: NOESY spectrum of compound 2 in DMSO-*d*<sub>6</sub>



Figure S17: <sup>1</sup>H NMR spectrum of compound 3 in DMSO-*d*<sub>6</sub>

 $\ensuremath{\mathbb{C}}$  2022 ACG Publications. All rights reserved.



**Figure S18:** <sup>13</sup>C NMR spectrum of compound **3** in DMSO- $d_6$ 



Figure S19: <sup>1</sup>H NMR spectrum of compound 4 in DMSO-*d*<sub>6</sub>



**Figure S20:** <sup>13</sup>C NMR spectrum of compound **4** in DMSO- $d_6$ 



Figure S21: HRESIMS spectrum of compound 5



**Figure S22:** <sup>1</sup>H NMR spectrum of compound **5** in DMSO- $d_6$ 



**Figure S23:** <sup>13</sup>C NMR spectrum of compound **5** in DMSO- $d_6$ 



Figure S24: HRESIMS spectrum of compound 6



**Figure S25:** <sup>1</sup>H NMR spectrum of compound **6** in DMSO- $d_6$ 



**Figure S26:** Extend <sup>1</sup>H NMR spectrum of compound **6** in DMSO- $d_6$ 



**Figure S27:** <sup>13</sup>C NMR spectrum of compound **6** in DMSO- $d_6$ 



**Figure S29:** <sup>1</sup>H NMR spectrum of compound **7** in DMSO- $d_6$ 



Figure S30: Extended <sup>1</sup>H NMR spectrum of compound 7 in DMSO- $d_6$ 



**Figure S31:** <sup>13</sup>C NMR spectrum of compound **7** in DMSO- $d_6$ 



Figure S32: HRESIMS spectrum of compound 8



Figure S33: <sup>1</sup>H NMR spectrum of compound 8 in DMSO-*d*<sub>6</sub>



**Figure S34:** Extended <sup>1</sup>H NMR spectrum of compound **8** in DMSO- $d_6$ 



**Figure S35:** <sup>13</sup>C NMR spectrum of compound **8** in DMSO- $d_6$ 



Figure S37: <sup>1</sup>H NMR spectrum of compound 9 in CDCl<sub>3</sub>



Figure S38: Extend <sup>1</sup>H NMR spectrum of compound 9 in CDCl<sub>3</sub>



Figure S39: <sup>1</sup>H NMR spectrum of compound 9 in CDCl<sub>3</sub>



Figure S40: <sup>1</sup>H NMR spectrum of compound 9 in CDCl<sub>3</sub>



Figure S41: <sup>1</sup>H NMR spectrum of compound 9 in CDCl<sub>3</sub>



Figure S42: Extended <sup>1</sup>H NMR spectrum of compound 9 in CDCl<sub>3</sub>



Figure S43: <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound 9 in CDCl<sub>3</sub>



Figure S44: <sup>1</sup>H NMRspectrum of compound 10 in CDCl<sub>3</sub>



© 2022 ACG Publications. All rights reserved.

*Deoxyinosine* (**3**): A dark yellow solid. <sup>1</sup>H NMR (DMSO- $d_6$ , 600 MHz)  $\delta$  (ppm): 8.04 (1H, s, H-2), 8.28 (1H, s, H-8), 6.30 (1H, dd, J = 6.6, 6.0 Hz, H-1'), 2.29 (1H, ddd, J = 10.4, 6.0, 2.4 Hz, H<sub>a</sub>-2'), 2.62 (1H, ddd, J = 10.4, 8.4, 5.4 Hz, H<sub>b</sub>-2'), 4.38 (1H, ddd, J = 5.4, 2.4, 2.4 Hz, H-3'), 3.86 (1H, m, H-4'), 3.58 (1H, dd, 12.0, 4.2 Hz, H<sub>a</sub>-5'), 3.51 (1H, dd, 12.0, 3.6 Hz, H<sub>b</sub>-5'). <sup>13</sup>C NMR (DMSO- $d_6$ , 150 MHz)  $\delta$  (ppm) data shown in Table S1.

*Inosine (4):* A dark yellow solid. <sup>1</sup>H NMR (DMSO- $d_6$ , 600 MHz)  $\delta$  (ppm), 8.06 (1H, s, H-2), 8.33 (1H, s, H-8), 5.87 (1H, d, J = 6.0 Hz, H-1'), 4.48 (1H, dd, J = 6.0, 4.8 Hz, H-2'), 4.13 (1H, dd, J = 4.8, 3.6 Hz, H-3'), 3.94 (1H, m, H-4'), 3.65 (1H, dd, 12.0, 3.6 Hz, H<sub>a</sub>-5'), 3.54 (1H, dd, 12.0, 3.6 Hz, H<sub>b</sub>-5'). <sup>13</sup>C NMR (DMSO- $d_6$ , 150 MHz)  $\delta$  (ppm) data shown in Table S1.

Adenosine (5): A dark yellow solid. HRESIMS m/z 252.1089 [M+H]<sup>+</sup> (calcd. for [C<sub>10</sub>H<sub>13</sub>N<sub>5</sub>O<sub>3</sub>]<sup>-</sup>: 252.1091,  $\Delta = -0.8$  ppm); m/z 274.0901 [M+Na]<sup>+</sup> (calcd. for [C<sub>10</sub>H<sub>12</sub>N<sub>5</sub>O<sub>3</sub>Na]<sup>-</sup>: 274.0911,  $\Delta = -3.7$  ppm); <sup>1</sup>H NMR (DMSO- $d_6$ , 600 MHz)  $\delta$  (ppm): 8.12 (1H, s, H-2), 8.33 (1H, s, H-8), 6.35 (2H, s, NH<sub>2</sub>), 6.34 (1H, dd, J =6.6, 6.0 Hz, H-1'), 2.25 (1H, ddd, J = 13.2, 6.0, 2.4 Hz, H<sub>a</sub>-2'), 2.72 (1H, ddd, J = 13.2, 8.0, 6.0 Hz, H<sub>b</sub>-2'), 4.41 (1H, ddd, J = 8.0, 6.0, 6.0 Hz, H-3'), 3.88 (1H, m, H-4'), 3.62 (1H, dd, 12.0, 6.5 Hz, H<sub>a</sub>-5'), 3.52 (1H, dd, 12.0, 5.0 Hz, H<sub>b</sub>-5'). <sup>13</sup>C NMR (DMSO- $d_6$ , 150 MHz)  $\delta$  (ppm) data shown in Table S1.

*Deoxyadenosine* (**6**):A dark yellow solid. HRESIMS m/z 268.1040 [M+H]<sup>+</sup> (calcd. for [C<sub>10</sub>H<sub>13</sub>N<sub>5</sub>O<sub>4</sub>]<sup>-</sup>: 268.1040,  $\Delta = 0.0$  ppm); m/z 290.0855 [M+Na]<sup>+</sup> (calcd. for [C<sub>10</sub>H<sub>12</sub>N<sub>5</sub>O<sub>4</sub>Na]<sup>-</sup>: 290.0860,  $\Delta = -1.9$  ppm); <sup>1</sup>H NMR (DMSO- $d_6$ , 600 MHz)  $\delta$  (ppm): 8.13 (1H, s, H-2), 8.34 (1H, s, H-8), 7.33 (2H, s, NH<sub>2</sub>), 5.87 (1H, dd, J = 6.6, 6.0 Hz, H-1'), 4.61 (1H, ddd, J = 6.6, 6.0, 5.4 Hz, H-2'), 4.14 (1H, ddd, J = 6.0, 6.0, 3.0 Hz, H-3'), 3.96 (1H, m, H-4'), 3.67 (1H, ddd, 12.0, 6.0, 4.2 Hz, H<sub>a</sub>-5'), 3.55 (1H, ddd, 12.0, 6.0, 3.6 Hz, H<sub>b</sub>-5'), 5.42 (1H, d, J = 6.0 Hz, 5'-O<u>H</u>). <sup>13</sup>C NMR (DMSO- $d_6$ , 150 MHz)  $\delta$  (ppm) data data shown in Table S1.

*Deoxyuridine* (7):A dark yellow solid. HRESIMS m/z 229.0818 [M+H]<sup>+</sup> (calcd. for [C<sub>9</sub>H<sub>13</sub>N<sub>2</sub>O<sub>5</sub>]<sup>+</sup>: 229.0819,  $\Delta = -0.4$  ppm); m/z 251.0633 [M+Na]<sup>+</sup> (calcd. for [C<sub>9</sub>H<sub>12</sub>N<sub>2</sub>O<sub>5</sub>Na]<sup>+</sup>: 251.0638,  $\Delta = -2.0$  ppm); <sup>1</sup>H NMR (DMSO- $d_6$ , 600 MHz)  $\delta$  (ppm): 5.61 (1H, d, J = 7.8 Hz, H-5), 7.82 (1H, d, J = 7.8 Hz, H-4), 6.15 (1H, dd, J = 6.6, 6.0 Hz, H-1'), 2.07 (2H, m, H-2'), 4.22 (1H, m, H-3'), 3.76 (1H, m, H-4'), 3.52 (1H, dd, 12.0, 3.6 Hz, H<sub>a</sub>-5'), 3.56 (1H, dd, 12.0, 3.6 Hz, H<sub>b</sub>-5'), <sup>13</sup>C NMR (DMSO- $d_6$ , 150 MHz)  $\delta$  (ppm) data shown in Table S1.

*Thymidine (8)*: A dark yellow solid. HRESIMS m/z 243.0976 [M+H]<sup>+</sup> (calcd. for [C<sub>10</sub>H<sub>16</sub>N<sub>2</sub>O<sub>5</sub>]<sup>+</sup>: 243.0975,  $\Delta = +0.3$  ppm); m/z 265.0796 [M+Na]<sup>+</sup> (calcd. for [C C<sub>10</sub>H<sub>15</sub>N<sub>2</sub>O<sub>5</sub>Na]<sup>+</sup>: 265.0795,  $\Delta = +0.3$  ppm); <sup>1</sup>H NMR © 2022 ACG Publications. All rights reserved. (DMSO- $d_6$ , 600 MHz)  $\delta$  (ppm): 7.68 (1H, s, H-4), 1.76 (3H, s, 5-CH<sub>3</sub>), 6.16 (1H, dd, J = 6.6, 6.0 Hz, H-1'), 2.06 (2H, m, H-2'), 4.23 (1H, m, H-3'), 3.53 (1H, dd, J = 12.0, 3.6 Hz, H-5'<sub>a</sub>), 3.56 (1H, dd, J = 12.0, 3.6 Hz, H-5'<sub>b</sub>). <sup>13</sup>C NMR (DMSO- $d_6$ , 150 MHz)  $\delta$  (ppm) data shown in Table S1.

*Glycerol arachidonate* (**9**):Colorless solid; HRESIMS m/z 396.3108  $[M+NH_4]^+$ , calcd for C<sub>23</sub>H<sub>42</sub>NO<sub>4</sub>: 396.3108,  $\Delta$ =0; *m/z* 401.2670 [M+Na]+, calcd. for C<sub>23</sub>H<sub>38</sub>O<sub>4</sub>Na: 401.2662,  $\Delta$ =+2.0 ppm. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  (ppm), <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  (ppm) data shown in Table S2.

*Arachidonic acid* (10):Colorless solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 600 MHz)  $\delta$  (ppm), <sup>13</sup>C NMR (CDCl<sub>3</sub>, 150 MHz)  $\delta$  (ppm) data shown in Table S2.

| Dog  | 3                  |            | 4                  |            | 5                  |            | 6              |            | 7              |            | 8                |            |
|------|--------------------|------------|--------------------|------------|--------------------|------------|----------------|------------|----------------|------------|------------------|------------|
| POS. | $\delta_{C}{}^{a}$ | $\delta_C$ | $\delta_{C}{}^{b}$ | $\delta_C$ | $\delta_{C}{}^{c}$ | $\delta_C$ | ${\delta_C}^d$ | $\delta_C$ | ${\delta_C}^e$ | $\delta_C$ | $\delta_{C}^{f}$ | $\delta_C$ |
| 2    | 145.8              | 145.9      | 145.8              | 145.9      | 152.4              | 152.4      | 152.4          | 152.4      | 151.96         | 150.9      | 150.6            | 150.6      |
| 4    | 147.8              | 147.8      | 148.2              | 148.2      | 148.9              | 148.9      | 149.0          | 149.1      | 141.43         | 140.4      | 136.2            | 136.1      |
| 5    | 124.4              | 124.4      | 124.5              | 124.4      | 119.3              | 119.3      | 119.3          | 119.4      | 102.68         | 101.8      | 109.4            | 109.3      |
| 6    | 156.6              | 156.7      | 156.6              | 156.6      | 156.1              | 156.1      | 156.2          | 156.2      | 163.57         | 163.8      | 163.8            | 163.9      |
| 8    | 138.5              | 138.4      | 138.7              | 138.7      | 139.5              | 139.5      | 139.9          | 139.9      |                |            |                  |            |
| 1′   | 83.5               | 83.6       | 87.6               | 87.5       | 83.9               | 83.9       | 87.9           | 87.9       | 86.03          | 84.1       | 83.8             | 83.7       |
| 2'   | 39.5               | 39.4       | 74.1               | 74.1       | 39.4               | 39.4       | 73.4           | 73.4       | 39.34          | 39.1       | 39.5             | 39.4       |
| 3'   | 70.6               | 70.6       | 70.3               | 70.3       | 71.0               | 71.0       | 70.6           | 70.7       | 71.05          | 70.4       | 70.5             | 70.4       |
| 4′   | 87.9               | 87.9       | 85.6               | 85.6       | 88.0               | 88.0       | 85.9           | 85.9       | 87.26          | 87.4       | 87.3             | 87.2       |
| 5'   | 61.6               | 61.6       | 61.3               | 61.3       | 61.9               | 61.9       | 61.6           | 61.7       | 61.81          | 61.3       | 61.5             | 61.3       |

Table S1: <sup>13</sup>C NMR data for compounds 1-8 in DMSO-d<sub>6</sub> and reference compounds

a:  $\delta_C$  of deoxyinosine in DMSO-d<sub>6</sub>[1]

b:  $\delta_C$  of inosine in DMSO-d<sub>6</sub>[2] c:  $\delta_C$  of deoxyadenosine in DMSO-d<sub>6</sub>[3] d:  $\delta_C$  of adenosine in DMSO-d<sub>6</sub>[3]

e:  $\delta_C$  of deoxyuridine in CDCl<sub>3</sub>[4]

f:  $\delta_C$  of thymidine in DMSO-d<sub>6</sub>[5]

| Pos.         | <b>9</b> ( glyc       | cerol arachidonate)              | <b>10</b> ( arachidonic acid) |                          |                       |                                  |  |
|--------------|-----------------------|----------------------------------|-------------------------------|--------------------------|-----------------------|----------------------------------|--|
|              | $\delta_{\rm C}$      | $\delta_{\rm H}$ (mult, J in Hz) | Pos.                          | $\delta_{ m C}{}^{ m a}$ | $\delta_{ m C}$       | $\delta_{\rm H}$ (mult, J in Hz) |  |
| 1'           | 174.1, C              | -                                | 1                             | 180.23                   | nd                    | _                                |  |
| 2'           | 33.5, CH <sub>2</sub> | 2.37 (t, 7.2)                    | 2                             | 33.43, CH <sub>2</sub>   | 33.5, CH <sub>2</sub> | 2.37 (t, 7.2)                    |  |
| 3'           | 24.8, $CH_2$          | 1.72 (m)                         | 3                             | 24.52, CH <sub>2</sub>   | 24.6, CH <sub>2</sub> | 1.72 (m)                         |  |
| 4'           | $26.5, CH_2$          | 2.11 (q, 7.2)                    | 4                             | 26.50, CH <sub>2</sub>   | 26.5, CH <sub>2</sub> | 2.11 (q, 7.2)                    |  |
| 5'           | 128.3, CH             | 5.32 - 5.42                      | 5                             | 129.08, CH               | 129.1, CH             | 5.32 - 5.42                      |  |
| 6'           | 129.1, CH             | 5.32 - 5.42                      | 6                             | 128.70,CH                | 128.3,CH              | 5.32 - 5.42                      |  |
| 7',10',13'   | 25.6, CH <sub>2</sub> | 2.82 (m)                         | 7                             | 25.66, CH <sub>2</sub>   | 25.6, CH <sub>2</sub> | 2.82 (m)                         |  |
| 8', 9', 11', | 128.8,                | 5.32 - 5.42                      | 8, 9,                         | 128.21,                  | 128.8,                |                                  |  |
| 12'          | 128.7,                |                                  |                               | 128.06, CH               | 128.6, CH             |                                  |  |
|              | 128.1,                |                                  |                               |                          |                       | 5.32 - 5.42                      |  |
|              | 127.9, CH             |                                  |                               |                          |                       |                                  |  |
| 14'          | 127.6, CH             | 5.32 - 5.42                      | 10                            | 25.66                    | 25.6, CH <sub>2</sub> | 2.82 (m)                         |  |
| 15'          | 130.6, CH             | 5.32 - 5.42                      | 11,                           | 128.52,                  | 128.2,                | 5.32 - 5.42                      |  |
|              |                       |                                  | 12                            | 127.85, CH               | 127.9, CH             |                                  |  |
| 16′          | 27.2, CH <sub>2</sub> | 2.06 (q, 7.2)                    | 13                            | 25.66                    | 25.6, CH <sub>2</sub> | 2.82 (m)                         |  |
| 17'          | 29.3, CH <sub>2</sub> | 1.30 (m)                         | 14                            | 127.61, CH               | 127.6, CH             | 5.32 - 5.42                      |  |
| 18′          | 31.5, CH <sub>2</sub> | 1.28 (m)                         | 15                            | 130.34, CH               | 130.5, CH             | 5.32 - 5.42                      |  |
| 19′          | 22.6, $CH_2$          | 1.30 (m)                         | 16                            | 27.25, CH <sub>2</sub>   | 27.2, CH <sub>2</sub> | 2.06 (q, 7.2)                    |  |
| 20'          | 14.1, CH <sub>3</sub> | 0.89 (t, 7.2)                    | 17                            | 29.39, CH <sub>2</sub>   | 29.3, CH <sub>2</sub> | 1.30 (m)                         |  |
| 1            | 65.3, CH <sub>2</sub> | 4.16 (dd, 12.0, 6.0)             | 18                            | 31.57, CH <sub>2</sub>   | 31.5, CH <sub>2</sub> | 1.28 (m)                         |  |
|              |                       | 4.20 (dd, 12.0, 4.8)             |                               |                          |                       |                                  |  |
| 2            | 70.3, CH              | 3.92 (m)                         | 19                            | 22.63, CH <sub>2</sub>   | 22.6, CH <sub>2</sub> | 1.30 (m)                         |  |
| 3            | 63.4, CH <sub>2</sub> | 3.60 (dd, 12.0, 5.4)             | 20                            | 14.05, CH <sub>3</sub>   | 14.1, CH <sub>3</sub> | 0.89 (t, 7.2)                    |  |
|              |                       | 3.70 (dd. 12.0, 2.4)             |                               |                          |                       |                                  |  |

Table S2: NMR spectroscopic data for 9 and 10 (in CDCl<sub>3</sub>) and reference compounds

The signals without multiples are overlapped, nd: none detected.

*Glycerol arachidonate* [6]: NMR <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>): 0.89 (3H, t, *J* = 6,8 Hz), 1.30 (8H, m), 1.70 (2H, m), 2.09 (4H, m), 2.37 (2H, t, J = 7,8 Hz), 2.81 (6H, m), 3.60 (1H, dd, *J* = 11.7, 5.8 Hz), 3.70 (1H, dd, *J* = 11.7, 3.9 Hz), 3.93 (1H, m), 4.15 (1H, dd, *J* = 11.7, 6.8 Hz), 4.21 (1H, dd, *J* = 11.7, 4.4 Hz), 5.38 (8H, m)

a:  $\delta_C$  of anachidonic acid in CDCl<sub>3</sub>[7]

#### S2: Cytotoxicity Assay

Human lung carcinoma (SK-LU-1) and human hepatocellular carcinoma (HepG2) cell lines were kindly provided by the Milan University, Italy and Long Island University, USA. The cells were maintained and cultured in DMEM supplemented with FBS, trypsin-EDTA, L-glutamine, sodium piruvat, NaHCO<sub>3</sub>, and penicillin/streptomycin at 37°C in a humidified atmosphere of 5% CO2. Cytotoxic effects of compounds were determined using Sulforhodamine B (SRB) assay as previously described by Skehan et al. In brief, the cells were incubated with/without compounds for 72h in 96-well culture plate. After incubation, cells were stained with sulforhodamine B and measured optical density (OD) at 540 nm [8]. Difference of OD between samples and vehicle well during experiments indicated cells situation induced by compounds. Results are expressed as percentage of cells death in comparison with vehicle well. Ellipticine was used as a positive control throughout experiments.

#### References

- F. Seela, W. Herdering and A. Kehne (1987). 152. N<sup>6</sup>-(Carbamoylmethyl)-2'-deoxyadenosine, a rare DNA constituent: Phosphoramidite synthesis and properties of palindromic dodecanucleotides, *Helv. Chim. Acta.* **70**(6), 1649-1660.
- [2] D. W Abbott and C. Woods. Synthesis and infrared and magnetic resonance studies of organorhodium complexes of guanosine, inosine, 1-methylinosine, purine, adenine, and adenosine, *Inorg. Chem.* 22, 597-602.
- [3] P. Ciuffreda, S. Casati and A. Manzocchi (2007). Spectral assignments and reference data. Complete <sup>1</sup>H and <sup>13</sup>C NMR spectral assignment of  $\alpha$  and  $\beta$ -adenosine, 2'-deoxyadenosine and their acetate derivatives, *Magn. Reson. Chem.* **45**(9), 781-784.
- [4] X. F. Sun, N. Wang, Q. Wu and X. F. Lin (2004). Controllable regioselective enzymatic synthesis of polymerizable-5'-O-vinyl- and 3'-O-vinyl-nucleoside analogues in acetone, *Biotechnol. Lett.* 26(12), 1019-1022.
- [5] H. Rosemeyer and F. Seela (1991). 1-(2'-Deoxy-β-D-xylofuranosyl)thymine building blocks for solid-phase synthesis and properties of oligo(2'-deoxyxylonucleotides), *Helv. Chim. Acta* 74, 748-760.
- [6] S. Hirao, K. Tara, K. Kuwano, J. Tanaka and F. Ishibashi (2012). Algicidal activity of glycerolipids from brown alga Ishige sinicola toward red tide microalgae, *Biosci. Biotechnol. Biochem.* **76**(**2**), 372-374
- [7] J. F. Santaren, M. Rio, J. Guileme and A. Ribera (1982). <sup>13</sup>C NMR spectra of 1-stearoyl-2-linoleyl-sn-glycero-3-phosphorylcholine and 1-steraroyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine in CDCl3 solution and in sonicated dispersions in <sup>2</sup>H<sub>2</sub>O, Org. Magn. Reson. **18**(2), 98-103.
- [8] P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney and M. R. Boyd (1990). New colorimetric cytotoxic assay for anticancer-drug screening, *J. Nat. Cancer Inst.* 82(13), 1107-1112.