Supporting Information

Rec. Nat. Prod. 17:3 (2023) 476-484

Diterpenoids from the Seeds of *Euphorbia Lathyris* and their Cytotoxic Acitivity

Na Liu¹, Yajie Sun¹, Peng Wang², Yulin Sun¹, Yilin Sun¹, Fengying Yang^{1*} and Di Ge^{1*}

¹School of Biological Science and Technology, University of Jinan, Jinan 250022, China Jinan,

Shandong 250000, P. R. China

²Shandong Jincheng Pharmaceutical Group Co., LTD, Zibo 255100, China Zibo,

Shandong 255000, P. R. China

Table of Contents	Page
Figure S1: EI-MS spectrum of 1 $[M - H_2O + H]^+$	2
Figure S2: EI-MS spectrum of $1 [M + Cl]^{-1}$	3
Figure S3: HR-ESI-MS spectrum of 1	4
Figure S4: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1	5
Figure S5: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1 (From $\delta_{\rm H}$ 0.9 ppm to $\delta_{\rm H}$ 4.0 ppm)	5
Figure S6: ¹ H-NMR (500 MHz, CDCl ₃) spectrum of 1 (From $\delta_{\rm H}$ 4.0 ppm to $\delta_{\rm H}$ 7.8 ppm)	6
Figure S7: ¹³ C-NMR (125 MHz, CDCl ₃) spectrum of 1	6
Figure S8: DEPT135 (600 MHz, CDCl ₃) spectrum of 1	7
Figure S9: HSQC spectrum of 1	7
Figure S10: HSQC spectrum of 1 (From $\delta_{\rm H}$ 0.2 ppm to $\delta_{\rm H}$ 3.6 ppm)	8
Figure S11: HSQC spectrum of 1 (From $\delta_{\rm H}$ 4.0 ppm to $\delta_{\rm H}$ 9.0 ppm)	8
Figure S12: HMBC spectrum of 1	9
Figure S13: HMBC spectrum of 1 (From $\delta_{\rm C}$ 10 ppm to $\delta_{\rm C}$ 50 ppm)	9
Figure S14: HMBC spectrum of 1 (From $\delta_{\rm C}$ 60 to $\delta_{\rm C}$ 150 ppm)	10
Figure S15: HMBC spectrum of 1 (From δ_c 110 to δ_c 210 ppm)	10
Figure S16: ¹ H- ¹ H COSY spectrum of 1	11
Figure S17: NOESY spectrum of 1	11
Figure S18: The structures of compounds 1-23	12
Figure S19: The key ¹ H- ¹ H COSY, HMBC and NOESY correlations of compound 1	12
Table S1: ¹ H (500 MHz) and ¹³ C (125 MHz) NMR data for compound 1	13
Figure S20: Inhibitory rate of compounds with different concentrations on BT-549 cells	14
Figure S21: Inhibitory rate of compounds with different concentrations on MDA-MB-231 cells	14
Table S2: Cytotoxic activity (IC ₅₀ in μ M)	14
Figure S21: The Scifinder similarity report for new compound 1	15
Figure S22: The structure is most similar to compound 1	16
Table S3: The ¹ H NMR data for compound 1 and the similar compound	16
Table S4: The ¹³ C NMR data for compound 1 and the similar compound	17

Figure S1: EI-MS spectrum of 1 $[M - H_2O + H]^+$

Figure S2: EI-MS spectrum of $1 [M + Cl]^{-}$

Figure S3: HR-ESI-MS spectrum of 1

© 2022 ACG Publications. All rights reserved.

Figure S10: HSQC spectrum of 1 (From $\delta_{\rm H}$ 0.2 ppm to $\delta_{\rm H}$ 3.6 ppm)

Figure S11: HSQC spectrum of **1** (From $\delta_{H}4.0$ ppm to δ_{H} 9.0 ppm)

Figure S13: HMBC spectrum of 1 (From δ_{C} 10 ppm to δ_{C} 50 ppm)

Figure S14: HMBC spectrum of 1(From δ_C 60 ppm to δ_C 150 ppm)

Figure S15: HMBC spectrum of 1 (From δ_C 110 ppm to δ_C 210 ppm) © 2022 ACG Publications. All rights reserved.

Figure S18: Structures of isolated compounds Euphorbia lathyris (1-23)

Figure S19: Selected HMBC, ¹H–¹H COSY and NOESY correlations of compound 1.

position	δΗ	δC
1	3.41 (1H, <i>dd</i> , <i>J</i> = 14.4, 8.7)	48.1
	1.65 (1H, <i>m</i>)	
2	2.26 (1H, <i>m</i> , H-2)	37.9
3	5.71 (1H, <i>t</i> , <i>J</i> = 3.6)	78.7
4	2.36 (1H, <i>dd</i> , <i>J</i> = 8.2, 3.5)	52.3
5	5.32 (1H, d, J = 8.2)	76.4
6		130.2
7	5.83 (1H, <i>dd</i> , <i>J</i> = 11.5, 5.2)	135.4
8	2.41 - 2.46 (2H, <i>m</i>)	24.1
9	1.29 (1H, <i>m</i> , H-9) ^b	30.6
10		25.3
11	1.47 (1H, <i>dd</i> , <i>J</i> = 11.6, 8.6)	27.8
12	6.49 (1H, <i>m</i>) ^a	142.7
13		134.6
14		197.0
15		93.2
16	0.96 (3H, d, J = 6.7)	14.1
17	4.55 (1H, <i>d</i> , <i>J</i> = 12.7)	65.4
	4.41 (1H, d, J = 12.7)	
18	1.30 (3H, <i>s</i> , H-18 ^{)b}	17.2
19	1.19 (3H, s, H-19)	28.7
20	1.77 (3H, <i>s</i>)	12.1
1'		166.4
2'	$6.49 (1H, d^{a})$	118.6
3'	7.74 (1H, <i>d</i>)	144.8
4'		134.5
5'		128.1
6'	7.40 (1H, <i>m</i>)	129.1
7'	7.40 (1H, <i>m</i>)	130.3
8'	7.40 (1H, m)	129.1
9'	7.53 (1H, <i>m</i>)	128.1
1"		169.7
2"	2.20 (3H, <i>s</i>)	22.4
1'''		172.1
2'''	2.06 (3H, <i>s</i>)	21.5

Table S1: ¹H (600 MHz) and ¹³C (150 MHz) NMR data for compound **1** (CDCl₃, δ in ppm, J in Hz)

^{a, b} Overlapping signals

Figure S20: Inhibitory rate of compounds with different concentrations on BT-549 cells.

Figure S21: Inhibitory rate of compounds with different concentrations on MDA-MB-231 cells

Compound	IC ₅₀ (μM)
	MDA-MB-231	BT-549
1	21.3	>30
2	15.3	>30
3	>30	10.1
10	>30	7.4
14	16.3	9.9
22	5.7	4.7

Table S2 : Cytotoxic activity (IC₅₀ in μ M)

Explore Saved Se	earches SciPlanner		
EFERENCES esearch Topic	SUBSTANCES: CHEMICAL STRUCTURE 🔮		SAVED ANSWER SETS
ouron Name ocument Identifier ournal atent ags UBSTANCES	Structure Editor:	Search Type: Exact Structure Substructure Similarity	Learn how to: Create Saved Answer Set View All Import KEEP ME POSTED You have no profiles.
emical Structure arkush olecular Formula operty Ibstance Identifier	Click image to change structure or view detail.	ChemDraw Launch a SciFinder/SciFinder* substance or reaction search directly from the latest version of ChemDraw. Learn More	Learn how to: Create Keep Me Posted
ACTIONS	Search		

CAS solutions * SCIFINDE AGS SOLUTION	ne a manata ana kata	Preferences Schinder Help + <mark>Sign Out</mark> Welcome sUN YILIN
Explore Saved	Searches SciPlanner	
Chemical Structure similarity		
SUBSTANCES		
	Select All Deselect All	
	0 of 8 Similarity Candidates Selected	Substances
	≥ 99 (most similar)	0
	95-98	7
	90-94	7
	85-89	60
	80-84	664
	75-79	1511
	70-74	4028
	65-69	14398
	L 0-64 (least similar)	55889
	Get Substances	

Figure S22: The Scifinder similarity report for new compound 1

Figure S23: The structure is most similar to compound 1

Table S3: The ¹ H NMR	data for compound 1	and the similar compound

position	1	16
1	3.41 (1H, <i>dd</i> , <i>J</i> = 14.4, 8.7)	3.60 (1H, dd, J = 14.0, 8.1)
	1.65 (1H, <i>m</i>)	1.55 (1H, <i>m</i>)
2	2.26 (1H, <i>m</i> , H-2)	
3	5.71 (1H, <i>t</i> , <i>J</i> = 3.6)	5.43 (1H, t, J = 3.5)
4	2.36 (1H, <i>dd</i> , <i>J</i> = 8.2, 3.5)	2.80 (1H, <i>dd</i> , <i>J</i> = 11.0, 3.5)
5	5.32 (1H, <i>d</i> , <i>J</i> = 8.2)	5.67 (1H, <i>d</i> , <i>J</i> =11.0)
6		
7	5.83 (1H, <i>dd</i> , <i>J</i> = 11.5, 5.2)	2.20, 2.38 (2H, <i>m</i>)
8	2.41 - 2.46 (2H, <i>m</i>)	1.52, 2.24 (2H, <i>m</i>)
9	1.29 (1H, <i>m</i> , H-9) ^b	1.10 (1H, <i>m</i> , H-9)
10		
11	1.47 (1H, <i>dd</i> , <i>J</i> = 11.6, 8.6)	1.43 (1H, <i>dd</i> , <i>J</i> = 11.5, 8.0)
12	$6.49 (1H, m)^{a}$	6.58 (1H, <i>d</i> , <i>J</i> =11.5)
13		
14		
15		
16	0.96 (3H, d, J = 6.7)	1.01 (3H, <i>d</i> , <i>J</i> = 6.7)
17	4.55 (1H, <i>d</i> , <i>J</i> = 12.7)	4.14 (1H, <i>d</i> , <i>J</i> = 12.2)
	4.41 (1H, <i>d</i> , <i>J</i> = 12.7)	4.38 (1H, <i>d</i> , <i>J</i> = 12.2)
18	$1.30 (3H, s, H-18)^{b}$	1.17 (3H, s, H-18)
19	1.19 (3H, <i>s</i> , H-19)	1.05 (3H, <i>s</i> , H-19)
20	1.77 (3H, <i>s</i>)	1.85 (3H, <i>s</i>)
2'	$6.49 (1H, d^{a})$	$6.49 (1H, d^{a})$
3'	7.74 (1H, <i>d</i>)	7.73 (1H, <i>d</i>)
6'	7.40 (1H, <i>m</i>)	7.41 (1H, <i>m</i>)
7'	7.40 (1H, <i>m</i>)	7.41 (1H, <i>m</i>)
8'	7.40 (1H, <i>m</i>)	7.41 (1H, <i>m</i>)
9'	7.53 (1H, <i>m</i>)	7.55 (1H, m)
2"	2.20 (3H, <i>s</i>)	2.02 (3H, s)
2'''	2.06(3H,s)	2.06(3H,s)

^{a, b} Overlapping signals

position	1	16	
1	48.1	44.8	
2	37.9	38.7	
3	78.7	80.9	
4	52.3	50.6	
5	76.4	140.4	
6	130.2	145.0	
7	135.4	34.1	
8	24.1	29.1	
9	30.6	32.3	
10	25.3	24.8	
11	27.8	28.5	
12	142.7	147.0	
13	134.6	134.3	
14	197.0	194.4	
15	93.2	94.6	
16	14.1	13.8	
17	65.4	64.0	
18	17.2	29.3	
19	28.7	16.1	
20	12.1	12.3	
1'	166.4	166.2	
2'	118.6	118.2	
3'	144.8	124.9	
4'	134.5	132.4	
5'	128.1	128.0	
6'	129.1	128.9	
7'	130.3	130.4	
8'	129.1	128.9	
9'	128.1	128.0	
1"	169.7	169.4	
2"	22.4	20.9	
1'''	172.1	170.7	
2'''	21.5	21.5	

 Table S4:
 The ¹³C NMR data for compound 1 and the similar compound