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Figure S1: HR-ESI-MS spectrum of 1 (kalshinoid G) 
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Figure S2: UV spectrum of 1 
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Figure S3: 1H-NMR (600 MHz, CDCl3) spectrum of 1 (kalshinoid G)
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Figure S4: 13C-NMR (150 MHz, CDCl3) spectrum of 1 (kalshinoid G) 
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Figure S5: HSQC spectrum of 1 (kalshinoid G) 
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Figure S6: HSQC spectrum of 1 (kalshinoid G) (From δC24 ppm to δC 43 ppm) 
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Figure S7: HMBC spectrum of 1 (kalshinoid G)
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Figure S8: HMBC spectrum of 1 (kalshinoid G) (From δC5 ppm to δC 90 ppm) 
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Figure S9: 1H-1H COSY spectrum of 1 (kalshinoid G)           
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Figure S10: ROESY spectrum of 1 (kalshinoid G) (From δH1.9 ppm to δH 3.0 ppm) 
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Figure S11: ROESY spectrum of 1 (kalshinoid G) (From δH1.0 ppm to δH 1.6 ppm) 
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Figure S12: HR-ESI-MS spectrum of 2 (kalshinoid H) 
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Figure S13: UV spectrum of 2 
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Figure S14: 1H-NMR (600 MHz, Acetone-d6) spectrum of 2 (kalshinoid H)
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Figure S15: 13C-NMR (150 MHz, Acetone-d6) spectrum of 2 (kalshinoid H)
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Figure S16: HSQC spectrum of 2 (kalshinoid H) 
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Figure S17: HSQC spectrum of 2 (kalshinoid H) (From δC 10 ppm to 50 ppm) 
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Figure S18: HMBC spectrum of 2 (kalshinoid H) 
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Figure S19: HMBC spectrum of 2 (kalshinoid H) (From δC 15 ppm to 85 ppm) 
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Figure S20: HMBC spectrum of 2 (kalshinoid H) (From δC 10 ppm to 145 ppm) 

 



 

© 2022 ACG Publications. All rights reserved  
  23 

 

 

Figure S21: 1H-1H COSY spectrum of 2 (kalshinoid H)
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Figure S22: ROESY spectrum of 2 (kalshinoid H) 
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Figure S23: ROESY spectrum of 2 (kalshinoid H) (From δH 0.8 ppm to 2.5 ppm)
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Figure S24 . DP4+ analyses of calculated and experimental NMR chemical shifts of 1. Isomer 1: 

1S*-1; Isomer 2: 1R*-1 
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Table S1 : Energy analyses of conformers (1R,4R,5S,10R)-1a-d 

NO. 3D comformers Free energy 

E (Hartree) ΔE (Kcal/mol) Boltzmann distribution 

1a 

 

 

-808.4255828 0.0000  53.69% 

1b 

 

 

-808.4248818 0.000700923 25.55% 

1c 

 

 

-808.4244607 0.704122371 16.35% 
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Table S2 : Energy analyses of conformers (1S,4R,5S,10R)-1a-d 

NO. 3D comformers Free energy 

E (Hartree) ΔE (Kcal/mol) Boltzmann distribution 

2a 

 

 

-808.4255828 0.0000  53.69% 

2b 

 

 

-808.4248818 0.000700923 25.55% 

2c 

 

 

-808.4244607 0.704122371 16.35% 

2d 

 

 

-808.4232252 0.002357659 4.41% 
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NMR Computational details of compound 1. 

The initial conformational analysis of the compound 1 was executed by employing Monte 

Carlo searching algorithm via the MMFF94 molecular mechanics force field[1], with the aid 

of the SPARTAN’16 program package, leading to afford a panel of relatively favored 

conformations in an energy range of 3 kcal/mol above the global minimum. The force field 

minimum energy conformers thus obtained were subsequently optimized by applying the 

density functional theory (DFT) with the B3LYP/6-31G(d) level in vacuum, implemented in 

the Gaussian 09 software package[2]. Harmonic vibrational frequencies were also performed 

to confirm no imaginary frequencies of the finally optimized conformers. Gauge-Independent 

Atomic Orbital (GIAO) calculations of NMR chemical shifts were accomplished by DFT at 

the mPW1PW91/6-311+g (d, p) level in Chloroform with the PCM solvent model in Gaussian 

09 software. NMR chemical shifts of TMS were calculated in the same level and used as the 

references. Regression analysis of calculated versus experimental NMR chemical shifts of 1 

was carried out. Linear correlation coefficients (R2) and Root-mean-square deviation (RMSD) 

were calculated for the evaluation of the results. After Boltzmann weighing of the predicted 

chemical shift of each isomers, the DP4+ parameters were calculated using the excel file 

provided by Ariel M. Sarotti.[3] 

Measurement of NO production 

NO production was quantified by measuring the accumulation of nitrite in the cell culture 

supernatant with Griese reagent [4]. Briefly, RAW 264.7 cells (6×106 cells/mL) were seeded 

in 96-well plates and pretreatment with compounds for 1 h before LPS (1μg/mL) stimulation. 

The isolated culture supernatant was mixed with Griese reagent (Beyotime Biotechnology, 

China). NaNO2 was used to generate a standard curve, and the absorbance of the mixture was 

measured at 540 nm. In the experiment, monomethylarginine monoacetate (L-NMMA) was 

used as a positive control. 
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