Supporting Information

Rec. Nat. Prod. X:X (2023) XX-XX

Eupatorione A, an Unusual Sesquiterpenoid from the Aerial Parts of *Eupatorium adenophorum*

Hao Geng*1, Wen-Jie Gu1, Jia-Hui Luo1, Yong-Xun Yang*2 and Yang Yu*3,4

1Department of Sciences, Xichang University, Xichang, Sichuan 615000, P. R. China
2Department of Animal Sciences, Xichang University, Xichang, Sichuan 615000, P. R. China
3School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, P. R. China
4Institute of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, 230012, P. R. China

Table of Contents

<table>
<thead>
<tr>
<th>Figure/Spectrum</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1: 1H NMR spectrum of compound 1 in CD3COCD3 (600 MHz)</td>
<td>2</td>
</tr>
<tr>
<td>Figure S2: Enlarge 1H NMR spectrum of compound 1 in CD3COCD3 (600 MHz)</td>
<td>3</td>
</tr>
<tr>
<td>Figure S3: 13C NMR spectrum of compound 1 in CD3COCD3 (150 MHz)</td>
<td>3</td>
</tr>
<tr>
<td>Figure S4: HSQC spectrum of compound 1 in CD3COCD3 (600 MHz)</td>
<td>4</td>
</tr>
<tr>
<td>Figure S5: HMBC spectrum of compound 1 in CD3COCD3 (600 MHz)</td>
<td>4</td>
</tr>
<tr>
<td>Figure S6: 1H- 1H COSY spectrum of compound 1 in CD3COCD3 (600 MHz)</td>
<td>4</td>
</tr>
<tr>
<td>Figure S7: ROESY spectrum of compound 1 in CD3COCD3 (600 MHz)</td>
<td>4</td>
</tr>
<tr>
<td>Figure S8: MS spectrum of compound 1</td>
<td>6</td>
</tr>
<tr>
<td>Figure S9: HRESIMS spectrum of compound 1</td>
<td>6</td>
</tr>
<tr>
<td>Figure S10: IR spectrum of compound 1</td>
<td>7</td>
</tr>
<tr>
<td>Figure S11: UV spectrum of compound 1</td>
<td>8</td>
</tr>
<tr>
<td>Figure S12: The Scifinder similarity report for 1</td>
<td>9</td>
</tr>
<tr>
<td>Table S1: Crystal data for 1</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure S1: ¹H NMR spectrum of compound 1 in CD₃COCD₃ (600 MHz)
Figure S2: Enlarge 1H NMR spectrum of compound 1 in CD$_3$COCD$_3$ (600 MHz)

Figure S3: 13C NMR spectrum of compound 1 in CD$_3$COCD$_3$ (150 MHz)
Figure S4: HSQC spectrum of compound 1 in CD$_3$COCD$_3$ (600 MHz)

Figure S5: HMBC spectrum of compound 1 in CD$_3$COCD$_3$ (600 MHz)
Figure S6: 1H-1H COSY spectrum of compound 1 in CD$_3$COCD$_3$ (600 MHz)

Figure S7: ROESY spectrum of compound 1 in CD$_3$COCD$_3$ (600 MHz)
Figure S8: MS spectrum of compound 1

Figure S9: HRESIMS spectrum of compound 1

© 2023 ACG Publications. All rights reserved.
Figure S10: IR spectrum of compound 1
Scan Analysis Report

Report Time : Sun 07 May 09:44:16 AM 2023
Method:
Beam: Dh\gy\ly\ga-3-3.DDN
Software version: 4.10 (470)
Operator:

Sample Name: ga-3-3
Collection Time: 5/7/2023 9:46:16 AM

Peak Table
Peak Style: Peaks
Peak Threshold: 0.0100
Range: 400.000m to 200.000m

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Abs</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.200</td>
<td>0.355</td>
</tr>
</tbody>
</table>

Figure S11: UV spectrum of compound 1
Figure S12: The Scifinder similarity report for 1
Table S1: Crystal data for 1

<table>
<thead>
<tr>
<th>Identification code</th>
<th>cu_2023603_0m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{15}H_{20}O_{3}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>248.31</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>100</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2\textsubscript{1}</td>
</tr>
<tr>
<td>a/Å</td>
<td>7.0436(5)</td>
</tr>
<tr>
<td>b/Å</td>
<td>7.0873(5)</td>
</tr>
<tr>
<td>c/Å</td>
<td>13.7049(10)</td>
</tr>
<tr>
<td>α/°</td>
<td>90</td>
</tr>
<tr>
<td>β/°</td>
<td>96.271(4)</td>
</tr>
<tr>
<td>γ/°</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å3</td>
<td>680.06(8)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>(\rho_{\text{calc}})/g/cm3</td>
<td>1.213</td>
</tr>
<tr>
<td>(\mu)/mm-1</td>
<td>0.669</td>
</tr>
<tr>
<td>F(000)</td>
<td>268.0</td>
</tr>
<tr>
<td>Crystal size/mm3</td>
<td>0.11 × 0.03 × 0.01</td>
</tr>
<tr>
<td>Radiation</td>
<td>CuK(\alpha) ((\lambda = 1.54178))</td>
</tr>
<tr>
<td>2Θ range for data collection/°</td>
<td>6.488 to 148.928</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-7 ≤ h ≤ 8, -8 ≤ k ≤ 8, -16 ≤ l ≤ 17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>12254</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2765 [R\textsubscript{int} = 0.1181, R\textsubscript{sigma} = 0.1109]</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>2765/1/168</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.086</td>
</tr>
<tr>
<td>Final R indexes [I≥2σ (I)]</td>
<td>R(_1) = 0.0831, wR(_2) = 0.2137</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R(_1) = 0.0874, wR(_2) = 0.2189</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å-3</td>
<td>0.56/-0.34</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>-0.3(2)</td>
</tr>
</tbody>
</table>