Supporting Information

Rec. Nat. Prod. 18:1 (2023) 107-113

Pterosterone 20,22-Acetonide, a New Ecdysteroid and Other Constituents from *Acrostichum aureum* L.

Tran Thi Minh^{1*}, Ho Khanh Toan^{1,2}, Duong Hoang Thuc¹, Do Minh Hieu¹, Tran Thi Minh Trang¹ and Vu Dinh Hoang¹

¹School of Chemitry and Life Sciences, Hanoi University of Science and Technology, Hanoi 10000, Vietnam

²Department of Chemistry and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States

Table of Contents	Page
Figure S1: HR-ESI Mass Spectrum of Pterosterone 20,22-acetonide (1)	3
Figure S2: ¹ H-NMR (500 MHz, acetone- d_6) Spectrum of Pterosterone 20,22-acetonide (1)	4
Figure S3: ¹ H-NMR (500 MHz, acetone- d_6) Spectrum of 1 (From δ_H 3.0 ppm to 6.0 ppm)	5
Figure S4: ¹ H-NMR (500 MHz, acetone- d_6) Spectrum of 1 (From $\delta_H 0.5$ ppm to 2.4 ppm)	5
Figure S5: ¹³ C-NMR (125 MHz, acetone- d_6) Spectrum of Pterosterone 20,22-acetonide (1)	6
Figure S6: DEPT 90 and 135 (125 MHz, acetone- d_6) Spectrum of 1	6
Figure S7: HSQC Spectrum of Pterosterone 20,22-acetonide (1)	7
Figure S8: HSQC Spectrum of 1 (From δ_c 30 ppm to δ_c 125 ppm)	7
Figure S9: HSQC Spectrum of 1 (From δ_c 15 ppm to δ_c 55 ppm)	8
Figure S10: ¹ H- ¹ H COSY Spectrum of Pterosterone 20,22-acetonide (1)	9
Figure S11: HMBC Spectrum of Pterosterone 20,22-acetonide (1)	10
Figure S12: HMBC Spectrum of 1 (From δ_C 15 ppm to δ_C 90 ppm)	11
Figure S13: HMBC Spectrum of 1 (From $\delta_{\rm C}$ 105 ppm to $\delta_{\rm C}$ 210 ppm)	12
Figure S14: NOESY Spectrum of Pterosterone 20,22-acetonide (1)	13
Figure S15: NOESY Spectrum of 1 (Expansion)	14
Figure S16: SciFinder Search Results of Compound 1	15
Figure S17: ¹ H-NMR (500 MHz, acetone- <i>d</i> ₆) Spectrum of Ponasterone A 20, 22-acetonide (2)	16
Figure S18: ¹³ C-NMR (125 MHz, acetone- <i>d</i> ₆) Spectrum of Ponasterone A 20, 22-acetonide (2)	17
Figure S19: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of Pterosterone (3)	18
Figure S20: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of Pterosterone (3)	19
Figure S21: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of Ponasterone A (4)	20
Figure S22: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of Ponasterone A (4)	21
Figure S23: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of 24-(2-Hydroxyethyl)-20-hydroxyecdysone (5)	22
Figure S24: ¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆) Spectrum of 24-(2-Hydroxyethyl)-20-hydroxyecdysone (5)	23
Figure S25: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of Quercetin (6)	24
Figure S26: ¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆) Spectrum of Quercetin (6)	25
Figure S27: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₄) Spectrum of Quercitrin (7)	26

Figure S28: ¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆) Spectrum of Quercitrin (7)	27
Figure S29: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of Isoquercitrin (8)	28
Figure S30: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of Isoquercitrin (8)	29
Figure S31: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of Rutin (9)	30
Figure S32: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of Rutin (9)	31
Figure S33: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of Afzelin (10)	32
Figure S34: ¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆) Spectrum of Afzelin (10)	33
Figure S35: ¹ H-NMR (500 MHz, DMSO- <i>d</i> ₆) Spectrum of Astragalin (11)	34
Figure S36: ¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆) Spectrum of Astragalin (11)	35
Figure S37: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of Naringenin (12)	36
Figure S38: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of Naringenin (12)	37
Figure S39: ¹ H-NMR (500 MHz, CD ₃ OD) Spectrum of Myrciaphenone A (13)	38
Figure S40: ¹³ C-NMR (125 MHz, CD ₃ OD) Spectrum of Myrciaphenone A (13)	39
Table S1 : ¹ H NMR (500 MHz) data spectroscopic of compounds 1-5 (δ in ppm, J in Hz)	40
Table S2 : ¹³ C NMR (125 MHz) data spectroscopic of compounds 1-5	41
Table S3: ¹³ C NMR data spectroscopic of compounds 1, 3 and 1a	42
Table S4 : ¹ H NMR (500 MHz) data spectroscopic of compounds 6-12 (δ in ppm, <i>J</i> in Hz)	43
Table S5 : ¹³ C NMR (125 MHz) data spectroscopic of compounds 6-12	44

Figure S1: HR-ESI Mass Spectrum of Pterosterone 20,22-acetonide (1)

Figure S2: ¹H-NMR (500 MHz, acetone-*d*₆) Spectrum of Pterosterone 20,22-acetonide (1)

Figure S3: ¹H-NMR (500 MHz, acetone- d_6) Spectrum of **1** (from δ_H 3.0 ppm to 6.0 ppm)

Figure S4: ¹H-NMR (500 MHz, acetone- d_6) Spectrum of **1** (from $\delta_H 0.5$ ppm to 2.4 ppm)

Figure S5: ¹³C-NMR (125 MHz, acetone-*d*₆) Spectrum of Pterosterone 20,22-acetonide (1)

Figure S6: DEPT 90 and 135 (125 MHz, acetone-*d*₆) Spectrum of 1

© 2024 ACG Publications. All rights reserved.

Figure S9: HSQC Spectrum of 1 (from δ_C 15 ppm to δ_C 55 ppm)

Figure S10: ¹H-¹H COSY Spectrum of Pterosterone 20,22-acetonide (1)

Figure S11: HMBC Spectrum of Pterosterone 20,22-acetonide (1)

Figure S12: HMBC Spectrum of **1** (From δ_C 15 ppm to δ_C 90 ppm)

Figure S13: HMBC Spectrum of **1** (From δ_C 105 ppm to δ_C 210 ppm)

Figure S14: NOESY Spectrum of Pterosterone 20,22-acetonide (1)

Figure S15: NOESY Spectrum of 1 (Expansion)

SciFinderⁿ®

Page 1

Figure S15: SciFinder Search Results of Compound 1

Ponasterone A 20,22-acetonide (2): ¹H NMR (500 MHz, acetone- d_6) data (Table S1); ¹³C NMR (125 MHz, acetone- d_6) data (Table S2).

Figure S16: ¹H-NMR (500 MHz, acetone-*d*₆) Spectrum of Ponasterone A 20, 22-acetonide (2)

Figure S17: ¹³C-NMR (125 MHz, acetone-*d*₆) Spectrum of Ponasterone A 20, 22-acetonide (2)

Figure S18: ¹H-NMR (500 MHz, CD₃OD) Spectrum of Pterosterone (3)

Figure S19: ¹³C-NMR (125 MHz, CD₃OD) Spectrum of Pterosterone (3)

Ponasterone A (4): ¹H NMR (500 MHz, CD₃OD) data (Table S1); ¹³C NMR (125 MHz, CD₃OD) data (Table S2).

Figure S20: ¹H-NMR (500 MHz, CD₃OD) Spectrum of Ponasterone A (4)

Figure S21: ¹³C-NMR (125 MHz, CD₃OD) Spectrum of Ponasterone A (4)

24-(2-Hydroxyethyl)-20-hydroxyecdysone (5): ¹H NMR (500 MHz, DMSO-*d*₆) data (Table S1); ¹³C NMR (125 MHz, DMSO-*d*₆) data (Table S2).

Figure S22: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of 24-(2-Hydroxyethyl)-20-hydroxyecdysone (5)

Figure S23: ¹³C-NMR (125 MHz, DMSO-*d*₆) Spectrum of 24-(2-Hydroxyethyl)-20-hydroxyecdysone (5)

Quercetin (6): ¹H NMR (500 MHz, DMSO-*d*₆) data (Table S3); ¹³C NMR (125 MHz, DMSO-*d*₆) data (Table S4).

Figure S24: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Quercetin (6)

Figure S25: ¹³C-NMR (125 MHz, DMSO-*d*₆) Spectrum of Quercetin (6)

Quercitrin (7): ESI-MS: $m/z = 301 \text{ [M-H-146]}^{-} (C_{21}H_{20}O_{11});$ ¹H NMR (500 MHz, DMSO-*d*₆) data (Table S3); ¹³C NMR (125 MHz, DMSO-*d*₆) data (Table S4).

Figure S26: ¹H-NMR (500 MHz, DMSO-d₆) Spectrum of Quercitrin (7)

Figure S27: ¹³C-NMR (125 MHz, DMSO-*d*₆) Spectrum of Quercitrin (7)

 $\ensuremath{\textcircled{O}}$ 2024 ACG Publications. All rights reserved.

Isoquercitrin (8): ESI-MS (positive): m/z 465[M+H]⁺ (C₂₁H₂₁O₁₂), 303[M+H-162]⁺ (C₁₅H₁₁O₇); ¹H NMR (500 MHz, DMSO-*d*₆) data (Table S3); ¹³C NMR (125 MHz, DMSO-*d*₆) data (Table S4).

Figure S28: ¹H-NMR (500 MHz, CD₃OD) Spectrum of Isoquercitrin (8)

Figure S29: ¹³C-NMR (125 MHz, CD₃OD) Spectrum of Isoquercitrin (8)

Rutin (9): ¹H NMR (500 MHz, CD₃OD) data (Table S3); ¹³C NMR (125 MHz, CD₃OD) data (Table S4).

Figure S30: ¹H-NMR (500 MHz, CD₃OD) Spectrum of Rutin (9)

Figure S31: ¹³C-NMR (125 MHz, CD₃OD) Spectrum of Rutin (9)

Figure S32: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Afzelin (10)

Figure S33: ¹³C-NMR (125 MHz, DMSO-d₆) Spectrum of Afzelin (10)

Astragalin (11): ¹H NMR (500 MHz, DMSO-*d*₆) data (Table S3); ¹³C NMR (125 MHz, DMSO-*d*₆) data (Table S4).

Figure S34: ¹H-NMR (500 MHz, DMSO-*d*₆) Spectrum of Astragalin (11)

Figure S35: ¹³C-NMR (125 MHz, DMSO-*d*₆) Spectrum of Astragalin (11)

Naringenin (12): ¹H NMR (500 MHz, CD₃OD) data (Table S3); ¹³C NMR (125 MHz, CD₃OD) data (Table S4).

Figure S36: ¹H-NMR (500 MHz, CD₃OD) Spectrum of Naringenin (12)

Figure S37: ¹³C-NMR (125 MHz, CD₃OD) Spectrum of Naringenin (12)

Myrciaphenone A (13): ¹H NMR (500 MHz, CD₃OD) δ : 6.21 (1H, *d*, *J* = 2.5 Hz, H-3), 5.97 (1H, *d*, *J* = 2.5 Hz, H-5), 5.05 (1H, *d*, *J* = 7.5 Hz, H-1'), 3.94 (1H, *dd*, *J* = 2.0, 12.0 Hz, H-6'a), 3.75 (1H, dd, *J* = 5.5, 12.0 Hz, H-6'b), 3.55 (1H, *t*, *J* = 9.0 Hz, H-2'), 3.48 (2H, *m*, H-3', H-5'), 3.44 (1H, *t*, *J* = 9.0 Hz, H-4'), 2.71 (3H, *s*, H₃-8); ¹³C NMR (125 MHz, CD₃OD) δ : 204.8 (C-7), 166.2 (C-6), 165.7 (C-4), 162.4 (C-2), 105.5 (C-1), 102.0 (C-1'), 98.2 (C-5), 95.4 (C-3), 78.5 (C-3'), 78.3 (C-5'), 74.7 (C-2'), 71.1 (C-4'), 62.4 (C-6'), 33.4 (C-8).

Figure S38: ¹H-NMR (500 MHz, CD₃OD) Spectrum of Myrciaphenone A (13)

Figure S39: ¹³C-NMR (125 MHz, CD₃OD) Spectrum of Myrciaphenone A (13)

Table S1: ¹H NMR (500 MHz) data spectroscopic of compounds **1-5** (δ in ppm, *J* in Hz)

Position	1 ^a	2 ^a	3 ^b	4 ^b	5°
1	1.77 m, 1.39 m	1.77 m, 1.38 m	1.80 m, 1.44 m	1.83 m, 1.47 m	1.62 m, 1.26 m
2	3.83 brd (10.5)	3.82 m	3.86 brd (12.0)	3.86 td (4.2, 7.2)	3.77 brs
3	3.92 m	3.90 m	3.97 brs	3.97 brd (2.4)	3.62 m
4	1.65 m	1.66 m	1.72 m	1.73 m	1.62 m, 1.50 m
5	2.32 m	2.33 m	2.41 dd (4.5, 12.5)	2.41 m	2.21 dd (4.0,13.0)
6	-	-	-	-	-
7	5.73 d (2.5)	5.72 d (2.5)	5.83 brs	5.83 d (2.4)	5.63 d (1.5)
8	-	-	-	-	-
9	3.14 <i>m</i>	3.16 m	3.17 m	3.18 m	3.01 m
10	-	-	-	-	-
11	1.79 m, 1.65 m	1.76 m, 1.63 m	1.82 m, 1.69 m	1.82 m, 1.70 m	1.65 m, 1.53 m
12	2.14 td (6.0, 15.6)	2.19 td (5.0, 12.5)	2.14 td (4.5, 13.0)	2.14 td (4.8, 13.2)	1.80 m
	1.79 m	1.81 m	1.88 m	1.90 m	1.50 m
13	-	-	-	-	-
14	-	-	-	-	-
15	1.92 m, 1.67 m	1.95 m, 1.67 m	1.98 m, 1.62 m	2.00 m, 1.60 m	2.03 m, 1.74 m
16	2.04 m, 1.98 m	2.19 m, 1.87 m	2.01 m, 1.69 m	2.0 m, 1.73 m	1.87 m, 1.52 m
17	2.34 m	2.34 m	2.36 m	2.39 m	2.26 m
18	0.81 s	0.83 s	0.91 s	0.91 s	0.77 <i>s</i>
19	0.91 s	0.93 s	0.98 s	0.98 s	0.84 <i>s</i>
20	-	-	-	-	-
21	1.17 s	1.16 s	1.23 s	1.19 s	1.07 s
22	3.93 m	3.70 dd (3.0, 10.0)	3.61 m	3.34 m	3.13 m
23	1.61 <i>m</i>	1.44 m	1.73 m, 1.36 m	1.47 m, 1.25 m	1.47 m, 1.15 m
24	3.52 m	1.45 m, 1.26 m	3.61 m	1.53 m, 1.24 m	1.45 m
25	1.67 m	1.58 m	1.70 m	1.60 <i>m</i>	-
26	0.89 d (7.0)	0.91 <i>d</i> (6.5)	0.93 d (7.0)	0.93 d (6.6)	1.06 s
27	0.90 d (7.0)	0.91 <i>d</i> (6.5)	0.97 d (7.0)	0.94 <i>d</i> (6.6)	1.09 s
28	-	-			1.26 m, 1.63 m
29	1.31 s	1.30 s			3.17 m, 3.29 m
30	1.36 s	1.36 s			-
C2-O <u>H</u>	4.11 d (5.0)	3.59 <i>d</i> (6.5)			4.45 d (6.0)
C3-O <u>H</u>	3.91 m	3.45 d (2.0)			4.34 <i>d</i> (3.0)
C14-O <u>H</u>	4.32 <i>s</i>	3.81 s			4.67 <i>s</i>
C20-O <u>H</u>	-	-			3.58 s
С22-О <u>Н</u>	-	-			4.38 d (5.0)
C24-OH	3.68 <i>d</i> (3.5)	-			-
C25-OH	-	-			4.13 <i>s</i>

^a Recorded in CD₃COCD₃, ^b in CD₃OD, ^c in DMSO-d₆

Table S2: ¹³C NMR (125 MHz) data spectroscopic of compounds 1-5

Position	1 ^a	2 ^a	3 ^b	4 ^b	5 ^c
1	37.4	37.8	37.4	37.4	36.6
2	68.1	68.2	68.7	68.7	66.8
3	68.0	68.1	68.5	68.5	66.6
4	32.0	32.1	32.8	32.9	31.6
5	51.1	51.3	51.8	51.8	50.1
6	203.9	202.9	206.4	206.5	202.8
7	121.8	122.0	122.2	122.1	120.5
8	165.2	164.5	167.9	168.0	165.3
9	34.4	34.6	35.1	35.1	33.2
10	38.6	38.7	39.3	39.3	37.7
11	21.0	21.2	21.5	21.5	20.1
12	31.8	32.0	32.5	32.5	30.3
13	48.0	48.1	*overlap	*overlap	46.9
14	84.7	84.8	85.2	85.2	83.0
15	31.4	31.7	31.8	31.8	30.9
16	22.0	22.1	21.5	21.5	20.3
17	49.9	50.1	50.4	50.5	48.7
18	17.5	17.5	18.0	18.0	17.2
19	24.3	24.4	24.4	24.4	23.8
20	85.5	85.2	77.8	77.9	76.3
21	22.4	22.4	21.0	21.0	21.0
22	80.4	82.3	77.6 ^d	78.0	75.8
23	33.8	27.5	35.7	37.7	26.1
24	75.1	37.3	77.5 ^d	30.5	35.6
25	33.7	28.8	34.1	29.2	68.8
26	17.4	22.9 ^d	17.0	22.8 ^d	29.0
27	19.3	22.8 ^d	19.3	23.4 ^d	30.0
28	107.6	107.2			41.4
29	27.1	27.2			66.6
30	29.2	29.3			

^a Recorded in CD₃COCD₃, ^b in CD₃OD, ^c in DMSO-*d*₆

^d Assignments may be interchanged in each column

*Overlapped with intensive solvent multiplet (CD₃OD: δ_C 49.0)

 Table S3 : ¹³C NMR data spectroscopic of compounds 1, 3 and 1a

Position	3 ^b	1 ^a	3a ^c	1a ^c
1	37.4	37.4	34.6	34.8
2	68.7	68.1	67.8	67.9
3	68.5	68.0	69.7	69.7
4	32.8	32.0	35.9	35.9
5	51.8	51.1	79.7	79.8
6	206.4	203.9	200.8	200.5
7	122.2	121.8	119.8	119.9
8	167.9	165.2	166.8	166.2
9	35.1	34.4	38.2	38.2
10	39.3	38.6	44.6	44.6
11	21.5	21.0	21.3	21.9
12	32.5	31.8	31.5	31.6
13	*overlap	48.0	48.0	47.8
14	85.2	84.7	83.9	83.9
15	31.8	31.4	32.0	31.6
16	21.5	22.0	22.0	22.4
17	50.4	49.9	49.8	50.7
18	18.0	17.5	17.8	17.4
19	24.4	24.3	17.7	17.1
20	77.8	85.5	76.8	85.3
21	21.0	22.4	21.5	23.3
22	77.6 ^d	80.4	76.7 ^d	82.6
23	35.7	33.8	35.6	33.5
24	77.5 ^d	75.1	77.5 ^d	74.3
25	34.1	33.7	34.0	34.2
26	17.0	17.4	17.0	17.2
27	19.3	19.3	19.5	19.6
C-acetal	-	107.6	-	104.0
		Dimethyl: 27.1, 29.2		Phenyl: 139.9, 129.3, 128.6, 127.4

^a Recorded in acetone-*d*₆, ^b in CD₃OD, ^c in pyridine-*d*₅

^d Assignments may be interchanged in each column

3a: ponasterone C; 1a: ponasterone C-20,22-benzylidene acetal [11]

Position	6 ^a	7 ^a	8 ^b	9 ^b	10 ^a	11 ^a	12 ^b
2	-	-	-	-	-	-	5.37 dd (13.3)
3	-	-	-	-	-	-	3.13 dd (13.0, 17.0)
							2.71 dd (3.0, 17.0)
4	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-
6	6.17 d (1.5)	6.20 d (2.0)	6.23 d (2.0)	6.12 d (2.0)	6.20 d (2.0)	6.18 d (1.5)	5.92 d (2.0)
7	-	-	-	-	-	-	-
8	6.39 d (1.5)	6.39 d (2.0)	6.42 d (2.0)	6.31 d (2.0)	6.41 d (2.0)	6.41 <i>d</i> (1.5)	5.91 d (2.0)
9	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-
1'	-	-	-	-	-	-	-
2'	7.66 d (1.0)	7.30 d (2.5)	7.73 d (2.0)	7.57 d (2.5)	7.75 d (9.0)	8.03 d (9.0)	7.34 d (8.4)
3'	-	-	-	-	6.91 d (9.0)	6.88 d (9.0)	6.84 d (8.4)
4'	-	-	-	-	-	-	-
5'	6.88 d (8.5)	6.89 d (8.5)	6.90 d (8.5)	6.78 d (8.5)	6.91 d (9.0)	6.88 d (9.0)	6.84 d (8.4)
6'	7.53 dd (1.0, 8.5)	7.28 dd (2.5, 8.5)	7.61 dd (2.0, 8.5)	7.53 dd (2.5, 8.5)	7.75 d (9.0)	8.03 d (9.0)	7.34 d (8.4)
5-OH	12.46 s	12.61 s	-	-	12.61 s	12.59 brs	-
1″	-	5.18 d (1.5)	5.26 d (7.5)	5.01 d (7.5)	5.28 d (1.5)	5.44 d (7.5)	-
2″	-	3.33 m	3.50 t (9.0)	3.16-3.39	3.10	3.08-3.54	-
3″	-	4.23 m	3.44 t (9.0)	(6H, <i>m</i>)	(3H, <i>m</i>)	(6H, <i>m</i>)	-
4″	-	4.32 m	3.36 t (9.0)				-
5″	-	3.33 m	3.23 m		3.97 brs		-
6″	-	0.81 d (5.5)	3.73 dd (2.5, 12.0)		0.79 d (5.5)		-
			3.59 dd (5.5, 12.0)				
1‴	-	-	-	4.45 brs	-	-	-
2'''-5'''	-	-	-	3.16-3.39	-	-	-
				(4H, <i>m</i>)			
6‴	-	-	-	1.02 d (6.0)	-	-	-

Table S4 : ¹H NMR (500 MHz) data spectroscopic of compounds 6-12 (δ in ppm, *J* in Hz)

^a Recorded in DMSO-d₆, ^b in CD₃OD

Position	6 ^a	7 ^a	8 ^b	9 ^b	10 ^a	11 ^a	12 ^b
2	146.8	156.5	158.5	158.6	157.3	156.2	80.5
3	135.6	134.5	135.7	135.6	134.2	133.2	44.0
4	175.8	177.7	179.5	179.5	177.7	177.4	197.8
5	160.7	161.3	163.1	163.0	161.3	161.2	165.5
6	98.2	98.7	99.9	100.0	98.8	98.9	97.1
7	164.0	164.3	166.1	166.1	164.4	164.7	168.4
8	93.4	93.7	94.7	94.9	93.8	93.8	96.2
9	156.2	157.2	159.1	159.4	156.6	156.5	164.9
10	103.0	104.1	105.7	105.5	104.1	103.8	103.4
1'	122.0	120.7	123.1	123.2	120.6	121.0	131.1
2'	115.1	115.5	117.6	117.7	130.6	130.9	129.0
3'	145.1	145.3	145.9	145.9	115.4	115.2	116.3
4'	147.7	148.6	149.9	149.8	160.0	160.0	159.0
5'	115.6	115.5	116.0	116.1	115.4	115.2	116.3
6′	120.0	121.3	123.2	123.6	130.6	130.9	129.0
1″		102.2	104.4	104.7	101.9	101.0	
2″		70.9	75.7	75.7	70.4	74.3	
3″		68.8	78.1	77.3	70.6	76.5	
4″		76.5	71.3	71.4	71.2	69.9	
5″		69.9	78.4	78.2	70.1	77.5	
6″		17.3	62.6	68.4	17.5	60.9	
1‴				102.4			
2‴′				72.3			
3‴′				72.1			
4‴′				74.0			
5‴′				69.7			
6‴′				17.9			

Table S5: ¹³C NMR (125 MHz) data spectroscopic of compounds 6-12

^a Recorded in DMSO-d₆, ^b in CD₃OD