Supporting Information

A New Ascochlorin Glycoside from Brittlestar-derived

Fungus Acremonium sp. and Its Biological Activities

Zhihong Luo ${ }^{\text {# }}$, Kai Liu ${ }^{1 \#}$, Zhenzhou Tang ${ }^{1}$, Liang Peng ${ }^{2}$, Chenghai Gao ${ }^{1}$, Chenxi Xia ${ }^{1}$, Yonghong Liu ${ }^{1 *}$ and Xianqiang Chen ${ }^{1 *}$
${ }^{1}$ Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P. R. China
${ }^{2}$ Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi

Science \& Technology Normal University, Nanchang, Jiangxi 330013, P. R. China

Table of Contents	Page
Figure S1: HR-ESI-MS spectrum of acremonoside (1)	3
Figure S2: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1)	3
Figure S3: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) (Enlarged)	4
Figure S4: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1)	4
Figure S5: HSQC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1)	5
Figure S6: $\mathrm{HSQC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 0.4-2.7, \delta_{\mathrm{C}} 5-55\right)$	5
Figure S7: HSQC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) (δ_{H} 2.7-5.7, $\delta_{\mathrm{C}} 55-126$)	6
Figure S8: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1)	6
Figure S9: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 0.5-5.5, \delta_{\mathrm{H}} 0.2-2.8\right)$	7
Figure S10: ${ }^{1} \mathrm{H}^{-1} \mathrm{H} \operatorname{COSY}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 0.5-5.5, \delta_{\mathrm{H}} 2.8-5.8\right)$	7
Figure S11: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 2.9-4.0, \delta_{\mathrm{H}} 2.9-3.9\right)$	8
Figure S12: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) spectrum of acremonoside (1)	8
Figure S13: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 0.3-2.7, \delta_{\mathrm{C}} 5-58\right)$	9
Figure S14: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 0.3-2.7, \delta_{\mathrm{C}} 70-166\right)$	9
Figure S15: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 0.3-2.7, \delta_{\mathrm{C}} 155-220\right)$	10
Figure S16: HMBC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 2.8-5.8, \delta_{\mathrm{C}} 5-90\right)$	10
Figure S17: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 2.9-4.7, \delta_{\mathrm{C}} 95-167\right)$	11
Figure S18: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 4.75-6.0, \delta_{\mathrm{C}} 5-130\right)$	11
Figure S19: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) spectrum of acremonoside (1) $\left(\delta_{\mathrm{H}} 9.6-10.6, \delta_{\mathrm{C}} 110-200\right)$	12
Figure S20: NOESY ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1)	12
Figure S21: $\mathrm{NOESY}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\delta_{\mathrm{H}} 0.5-5.0, \delta_{\mathrm{H}} 0.4-2.7$)	13
Figure S22: $\mathrm{NOESY}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\delta_{\mathrm{H}} 0.5-5.5, \delta_{\mathrm{H}} 2.9-4.6$)	13
Figure S23: Linear correlation plots of experimental (1) versus calculated isomers ($12 S-1$ and $12 R$-1)	14
${ }^{13} \mathrm{C}$ NMR chemical shifts	
Figure S24: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2	15
Figure S25: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2	15
Figure S26: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$	16
Figure S27: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3	16
Figure S28: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 4	17
Figure S29: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{4}$	17
Figure S30: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5}$	18

Figure S31: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{5}$ 18
Figure S32: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{6}$ 19
Figure S33: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6 19
Figure S34: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 7 20
Figure S35: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 7 20
Figure S36: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{8}$ 21
Figure S37: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{8}$ 21
Figure S38: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 9 22
Figure S39: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 9 22
Figure S40: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 0}$ 23
Figure S41: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 0}$ 23
Table S1: Inhibitory effects of yeast α-glucosidase at the concentration of 10 mM 24
Table S2: Inhibitory activities of compounds $\mathbf{1 - 1 0}$ against tumor cells at the concentration of $40 \mu \mathrm{M}$ 24
Table S3: Antibacterial activities of compounds 1-10 25
Figure S42: Scifinder Search report for compound 1 (exact match) 26
Figure S43: Scifinder Search report for compound 1 (>95 \% match) 27
Table S4: Comparison of NMR data between 1 and vertihemipterin A 28

Figure S1: HR-ESI-MS spectrum of acremonoside (1)

Figure S2: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1)

Figure S3: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) (Enlarged)

Figure S4: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) © 2024 ACG Publications. All rights reserved.

Figure S5: HSQC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1)

Figure S6: $\mathrm{HSQC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside $(\mathbf{1})\left(\delta_{\mathrm{H}} 0.4-2.7, \delta_{\mathrm{C}} 5-55\right)$
© 2024 ACG Publications. All rights reserved.

Figure S7: HSQC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) ($\delta_{\mathrm{H}} 2.7-5.7, \delta_{\mathrm{C}} 55-126$)

Figure S8: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1)

Figure S9: ${ }^{1} \mathrm{H}^{-1} \mathrm{H} \operatorname{COSY}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) $\left(\delta_{\mathrm{H}} 0.5-5.5, \delta_{\mathrm{H}} 0.2-\right.$

> 2.8)

Figure S10: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) $\left(\delta_{\mathrm{H}} 0.5-5.5, \delta_{\mathrm{H}} 2.8-\right.$ 5.8)
© 2024 ACG Publications. All rights reserved.

Figure S11: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) $\left(\delta_{\mathrm{H}} 2.9-4.0, \delta_{\mathrm{H}} 2.9-\right.$

Figure S12: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) spectrum of acremonoside (1)
© 2024 ACG Publications. All rights reserved.

Figure S13: HMBC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) ($\delta_{\mathrm{H}} 0.3-2.7, \delta_{\mathrm{C}} 5-58$)

Figure S14:MBC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) ($\delta_{\mathrm{H}} 0.3-2.7, \delta_{\mathrm{C}} 70-166$)

Figure S15: HMBC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) ($\delta_{\mathrm{H}} 0.3-2.7, \delta_{\mathrm{C}} 155-220$)

Figure S16: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) ($\left.\delta_{\mathrm{H}} 2.8-5.8, \delta_{\mathrm{C}} 5-90\right)$

Figure S17: HMBC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) $\left(\delta_{\mathrm{H}} 2.9-4.7, \delta_{\mathrm{C}} 95-167\right)$

Figure S18: HMBC ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) $\left(\delta_{\mathrm{H}} 4.75-6.0, \delta_{\mathrm{C}} 5-130\right)$

Figure S19: $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of acremonoside (1) $\left(\delta_{\mathrm{H}} 9.6-10.6, \delta_{\mathrm{C}} 110-200\right)$

Figure S20: NOESY ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1)
© 2024 ACG Publications. All rights reserved.

Figure S21: NOESY ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) $\left(\delta_{\mathrm{H}} 0.5-5.0, \delta_{\mathrm{H}} 0.4-2.7\right)$

Figure S22: NOESY ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of acremonoside (1) $\left(\delta_{\mathrm{H}} 0.5-5.5, \delta_{\mathrm{H}}\right.$ 2.9-4.6)

Figure S23: Linear correlation plots of experimental (1) versus calculated isomers (12S-1 and $12 R-1){ }^{13} \mathrm{C}$ NMR chemical shifts
Note : Density functional theory methods were employed to facilitate ${ }^{13} \mathrm{C}$ chemical shift assignments of $\mathbf{1}$. Conformational analyses were carried out by random searching with an energy cutoff of $7 \mathrm{kcal} / \mathrm{mol}$ using the Schrödinger MacroModel software package. The MMFF94 force field was employed. The conformers were optimized in the gas phase at the PCM (solvent = methanol) B3LYP-GD3BJ/6-31G(d) level using the Gaussian 16 program. NMR chemical shifts of $12 R-\mathbf{1}$ and $12 S-\mathbf{1}$ were calculated by the GIAO method at the mpw1pw91/6-31+G(d, p) level of theory in the methanol. The computational ${ }^{13} \mathrm{C}$ NMR data were obtained by linear regression.

Figure S24: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2}$

Figure S25: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2
© 2024 ACG Publications. All rights reserved.

Figure S26: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$

Figure S27: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$
© 2024 ACG Publications. All rights reserved.

Figure S28: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{4}$

Figure S29: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{4}$
© 2024 ACG Publications. All rights reserved.

Figure S30: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 5

Figure S31: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 5
© 2024 ACG Publications. All rights reserved.

Figure S32: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 6

Figure S33: ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 6
© 2024 ACG Publications. All rights reserved.

Figure S34: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 7

Figure S35: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 7
© 2024 ACG Publications. All rights reserved.

Figure S36: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{8}$

Figure S37: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{8}$

Figure S38: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 9

Figure S39: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 9
© 2024 ACG Publications. All rights reserved.

Figure S40: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 0}$

Figure S41: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of $\mathbf{1 0}$

Table S1 : Inhibitory effects of yeast α-glucosidase at the concentration of 10 mM

Compounds	Inhibitory rate (\%)
$\mathbf{1}$	62.7
$\mathbf{2}$	6.1
$\mathbf{3}$	26.6
$\mathbf{7}$	59.9
$\mathbf{8}$	54.6
$\mathbf{1 0}$	56.1
Acarbose $^{\text {a }}$	95.5

${ }^{\text {a }}$ positive control, the inhibitory rate was determined at the concentration of $4 \mu \mathrm{M}$.
Table S2 : Inhibitory activities of compounds 1-10 against tumor cells at the concentration of $40 \mu \mathrm{M}$

Compounds	Inhibitory rate (\%)		
	DLD1	SW1990	PANC1
$\mathbf{1}$	-	-	-
$\mathbf{2}$	54.8	59.1	37.9
$\mathbf{3}$	16.2	66.1	3.3
$\mathbf{4}$	6.0	57.7	26.6
$\mathbf{5}$	76.7	67.6	60.5
$\mathbf{6}$	72.2	67.7	64.3
$\mathbf{7}$	13.3	66.3	35.8
$\mathbf{8}$	66.2	65.5	51.1
$\mathbf{9}$	69.2	67.9	49.3
$\mathbf{1 0}$	19.4	72.1	35.2

[^0]Table S3 : Antibacterial activities of compounds 1-10

	MIC ($\mu \mathrm{g} / \mathrm{mL}$)					
compounds	Actinomyces viscosus	Staphylococcus epidermidis	Bacillus subtilis	MASR	Staphylococcus aureus	Micrococcus luteus
$\mathbf{1}$	-	-	-	-	-	-
$\mathbf{2}$	31.25	15.625	62.500	-	125.000	-
$\mathbf{3}$	7.81	3.90	3.90 u 0	62.500	7.810	3.90
$\mathbf{4}$	7.81	7.81	7.810	7.810	15.6250	3.90
$\mathbf{5}$	1.95	1.95	3.900	15.6250	7.810	7.81
$\mathbf{6}$	1.95	3.90	7.810	-	15.6250	62.5
$\mathbf{7}$	62.5	31.25	31.250	62.50	62.50	31.25
$\mathbf{9}$	1.95	1.95	1.950	31.250	3.900	7.81
$\mathbf{1 0}$	7.81	7.81	7.810	31.250	7.81	15.625

- no inhibitory activity at the concentration of $125 \mu \mathrm{~g} / \mathrm{mL}$. MRSA Methicillin-resistant Staphylococcus aureus. ${ }^{\text {a }}$ positive control
Filtered By:

Similarity:	$95-98,80-84$
Number of Components:	1

Structure Match: Similarity

Search Tasks

Task	Search Type
Exported: Returned Substance Results + Filters (16)	Substances

Figure S43: Scifinder Search report for compound 1 (exact match)

CAS 登：Scifinder＂

Substances（4）						View in SciFinder ${ }^{\text {n }}$		
1	Similarity Score： 99		2	Similarity Score： 83		3	Simil	Score： 83
765956－86－3			165187－17－7			2111912－99－1		
Absolut Doubl	 tereochemistry ond geometry	own wn	 Absolute Double	reochemistry otation（＋） nd geometry	wn， wn	$\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ClO}_{6}$		
$\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{ClO}_{10}$ 3－Chloro－4，6－ 4R）－3－methyl ranosyl）oxy］－5 3－oxocyclohe dehyde	ydroxy－2－m （ $4-O$－methy $(1 S, 2 R, 6 R)-$ ］－2－penten－	hyl－5－［（2E， －D－glucopy 6－trimethyl－ l］benzal	$\begin{aligned} & \mathrm{C}_{28} \mathrm{H}_{39} \mathrm{ClO}_{6} \\ & (1 R, 2 E)-4-(3-\mathrm{Ch} \\ & \text { dihydroxy-4-m } \\ & {[[(1 S, 2 R, 6 R)-1,2} \\ & \text { ohexyl]methyl] } \\ & \text { tanoate } \end{aligned}$	o－5－formy hylphenyl） trimethyl－ －buten－1－y	6－ methyl－1－ xocycl methylbu	3－Chloro－4，6－ （hydroxymeth oxocyclohexy methylbenzal	$\begin{aligned} & \text { ydroxy-5-[4- } \\ & \text {-5-(1,2,6-trin } \\ & \text { 2-penten-1-y } \\ & \text { hyde } \end{aligned}$	droxy－3－ thyl－3－ 2－
2 References	』 0 Reactions	$\text { 1. } 0$ Suppliers	［1 4 References	$\text { 』 } 1$ Reaction	1 Supplier	Fi 0 References	』 0 Reactions	le 1 Supplier

1214976－02－9 Similarity Score： 83

Table S4: Comparison of NMR data between $\mathbf{1}$ and vertihemipterin A

Position	1 in $\mathrm{CD}_{3} \mathrm{OD}$		Vertihemipterin A in CDCl_{3}	
	$\delta_{\text {C }}$ (type)	$\begin{aligned} & \hline \delta_{\mathrm{H}} \text { (multiplicity, } J \\ & \text { in } \mathrm{Hz} \text {) } \\ & \hline \end{aligned}$	$\delta_{\text {C }}$ (type)	$\delta_{\mathrm{H}}($ multiplicity, J in Hz)
1	114.3 (C)		113.5 (C)	
2	161.5 (C)		162.0 (C)	
3	113.6 (C)		113.3 (C)	
4	159.3 (C)		156.2 (C)	
5	112.4 (C)		113.3 (C)	
6	138.3 (C)		138.3 (C)	
7	$13.2\left(\mathrm{CH}_{3}\right)$	2.55 (s)	$14.5\left(\mathrm{CH}_{3}\right)$	2.60 (s)
8	193.2 (C)		193.3 (C)	
9	$21.0\left(\mathrm{CH}_{2}\right)$	3.40 (dd, 13.5, 8)	$21.5\left(\mathrm{CH}_{2}\right)$	3.40 (m) ; 3.37 (m)
10	125.0 (CH)	5.57 (t, 7.5)	124.4 (CH)	5.41 (t, 7.0)
11	137.2 (C)		138.3 (C)	
12	83.0 (CH)	4.16 (t, 6.0)	85.1 (CH)	6.42 (dd, 6.1, 4.2)
13	$39.3\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.77 \text { (dd, } 15.5,6.0) ; \\ & 1.50(\mathrm{dd}, 15.5,5.0) \end{aligned}$	$40.6\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.85(\mathrm{dd}, 15.6,6.6) ; 1.4(\mathrm{dd}, \\ & 15.6,3.9) \end{aligned}$
14	43.7 (C)		44.0 (C)	
15	36.0 (CH)	2.21 (m)	36.5 (CH)	2.22 (m)
16	$30.9\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.79(\mathrm{~m}) ; 1.50(\mathrm{dq}, \\ & 12.5,5.0) \end{aligned}$	$31.1\left(\mathrm{CH}_{2}\right)$	1.80 (m); 1.57 (dq, 13.0, 5.4)
17	$41.0\left(\mathrm{CH}_{2}\right)$	2.18 (m); 2.12 (m)	$41.3\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.28 \text { (ddd, 13.5, 5.4, 2.4); } 2.21 \\ & (\mathrm{~m}) \end{aligned}$
18	215.4 (C)		213.8 (C)	
19	50.1 (CH)	2.59 (q, 7.0)	50.4 (CH)	2.53 (q, 6.7)
20	14.6 ($\left.\mathrm{CH}_{3}\right)$	0.51 (s)	$15.6\left(\mathrm{CH}_{3}\right)$	0.57 (s)
21	$14.7\left(\mathrm{CH}_{3}\right)$	0.97 (d, 6.5)	$15.8\left(\mathrm{CH}_{3}\right)$	0.98 (d, 6.7)
22	$7.2\left(\mathrm{CH}_{3}\right)$	0.69 (d, 7.0)	$8.1\left(\mathrm{CH}_{3}\right)$	0.77 (d, 6.7)
23	$10.5\left(\mathrm{CH}_{3}\right)$	1.83 (s)	$11.5\left(\mathrm{CH}_{3}\right)$	1.82 (s)
1^{\prime}	99.4 (CH)	4.45 (brs)	101.9 (CH)	4.22 (d, 7.9)
2^{\prime}	71.4 (CH)	3.82 (d 3.0)	74.1 (CH)	3.38 (m)
3^{\prime}	74.2 (CH)	3.37 (dd, 9.5, 3.0)	76.7 (CH)	3.56 (t, 8.8)
4^{\prime}	66.7 (CH)	3.59 (t, 9.5)	79.9 (CH)	3.08 (dd, 9.5, 8.7)
5'	76.6 (CH)	$\begin{aligned} & 2.97 \text { (ddd, } 9.5,5.0, \\ & 3.0 \text {) } \end{aligned}$	75.2 (CH)	3.14 (ddd, 9.5, 5.7, 2.8)
6^{\prime}	$61.1\left(\mathrm{CH}_{2}\right)$	3.69 (dd, 11.5, 3.0);	$62.5\left(\mathrm{CH}_{2}\right)$	3.79 (dd, 11.6, 2.7)
		3.65 (dd, 11.5, 5.0)		3.64 (dd, 11.6, 5.7)
$4^{\prime}-\mathrm{OCH}_{3}$			$60.7\left(\mathrm{CH}_{3}\right)$	3.55 (s)

[^0]: - inactive. DLD1 human colorectal carcinoma cells DLD1. SW1990 pancreatic cancer cell line SW1990. PANC1 pancreatic cancer cell line PANC1.

