Supporting Information

Rec. Nat. Prod. 18:1 (2024) 155-160

A New Aporphine Alkaloids from *Litsea glutinosa* to Attenuate Palmitate Induced Viability in MIN6 Cells

Yuanyuan Zhou^{1,2#}, Chenpeng Liu ^{2#}, Zibao Huang²,

Guoyu Li^{*1} and Xiaopo Zhang^{*2}

¹ College of Pharmacy, Harbin University of Commerce, Harbin 150076, China

² School of Pharmaceutical Science, Hainan Medical University, Haikou, 571101, P.R. China

Table of Contents	Page
Table S1: ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for Litsine E (1) in DMSO- d_6	2
Table S2: ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for Litsine E (1) in CDCl ₃	3
Figure S1: HR-ESI-MS spectrum of 1 (Litsine E)	4
Figure S2: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 1 (Litsine E)	5
Figure S3: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 1 (Litsine E) (From δ H 2.5 ppm to	6
δH 3.8 ppm)	0
Figure S4: ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 1 (Litsine E)	7
Figure S5: ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 1 (Litsine E) (From δH 2.5 ppm to δH	8
3.8 ppm)	0
Figure S6: ¹³ C-NMR (150 MHz, DMSO- d_6) spectrum of 1 (Litsine E)	9
Figure S7: ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 1 (Litsine E)	10
Figure S8: HSQC spectrum of 1 (Litsine E)	11
Figure S9: HMBC spectrum of 1 (Litsine E)	12
Figure S10: HMBC spectrum of 1 (Litsine E) (Frm δC 25 ppm to δC 70 ppm)	13
Figure S11: HMBC spectrum of 1 (Litsine E) (From δC 100 ppm to δC 160 ppm)	14
Figure S12: ¹ H- ¹ H COSY spectrum of 1 (Litsine E)	15
Figure S13: NOESY spectrum of 1 (Litsine E)	16
Figure S14: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 2 (Boldine)	17
Figure S15: ¹³ C-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of 2 (Boldine)	18
Figure S16: ¹ H-NMR (600 MHz, DMSO- <i>d</i> ₆) spectrum of 3 (Isoboldine)	19
Figure S17: ¹³ C-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of 3 (Isoboldine)	20
Figure S18: ¹ H-NMR (600 MHz, DMSO- d_6) spectrum of 4 (Launobine)	21
Figure S19: ¹³ C-NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of 4 (Launobine)	22
Figure S20: Scifinder search report of 1 (Litsine E)	23
Table S3: ¹ H (600 MHz) and ¹³ C (150 MHz) NMR data for Litsine E (1) in DMSO- d_6	
and ${}^{1}H$ (600 MHz) and ${}^{13}C$ (150 MHz) NMR data for Corybungine G (the most	24
similar compound) in methanol- d_4	
Figure S21: The Research Method of Cell Viability Assay	25

^{*} Corresponding authors: E- Mail: leegy@163.com (L. Guo-yu), Phone: +086-045184866797; E- Mail:

z_xp1412@163.com (Z. Xiao-po), Phone: +086-18789016687.

[#] Authors contributed equally to this work.

Table S1: ¹H (600 MHz) and ¹³C (150 MHz) NMR data for Litsine E (1) in DMSO-*d*₆

1

Position	$\delta_{\rm C}$, type	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC
1	142.9, C			
1a	114.6, C			
1b	129.0, C			
2	146.5, C			
3 3a	107.3, CH 126.5, C	6.64, s		C- 1, 2, 4, 1b
4	29.3, CH ₂	2.52, br d (15.6) 2.73, m		C- 3a, 5
5	48.5, CH ₂	2.20, m 2.91, m		C- 6a, 4, 3a, 7'
6a	60.5, CH	3.01, d (7.3)	H-7	
7	35.2, CH ₂	2.20, m 3.22, br d (13.2)		C- 6a, 7a,11a, 1b
7a	123.6, C			
8	116.2, CH	6.80, d (8.0)	H-9	C- 7a, 11a, 10
9	122.8, CH	6.90, d (8.0)		C- 7a, 11, 10
10 11	145.7, C 149.7 C			
11 11a	149.7, C 128.7. C			
10-OMe	60.2, CH ₃	3.65, s		C- 10
O-CH ₂ -O (1,2)	100.5, CH ₂	6.04, s 5.90, s		C-1,2
1'	129.5, C			
2', 6'	130.4, CH	7.11, d (8.3)	H-3', 5'	C-1', 4', 3', 5', 7'
3', 5'	115.4, CH	6.72, d (8.2)		C- 1', 4'
4'	156.8, C	2.02 had (12.0)		
7'	57.9, CH ₂	4.11, br d (13.2)		C- 1', 2', 6', 6a, 5

Position $\delta_{\rm C}$, type $\delta_{\rm H} \left(J \text{ in Hz} \right)$ 1 142.3, C 114.0, C 1a 129.6, C 1b 2 145.0, C 3 107.8, CH 6.62, s 3a 126.4, C 2.40, m 4 29.7, CH₂ 3.00, m 2.20, m 5 48.4, CH₂ 3.09, m **6**a 60.6, CH 2.73, d (13.2) 2.20, m 7 36.0, CH₂ 3.21, br d (13.8) 7a 123.4, C 8 115.3, CH 6.82, d (8.4) 9 6.92, d (7.8) 122.4, CH 10 144.2, C 11 148.2, C 11a 128.8, C 10-OMe 60.3, CH₃ 3.62, s 6.11, s $O-CH_2-O(1,2)$ 100.8, CH₂ 5.90, s 1' 129.9, C 2', 6' 130.6, CH 6.96, d (8.4) 3', 5' 114.2, CH 6.80, d (8.4) 4' 155.8, C 3.21, br d (13.8) 7' 59.6, CH₂ 4.21, br d (13.8)

Table S2: ¹ H (600 MHz) a	d ¹³ C (150 MHz) NMR dat	a for Litsine E (1) in CDCl ₃
--------------------------------------	-------------------------------------	--

1

Figure S1: HR-ESI-MS spectrum of 1 (Litsine E)

Figure S2: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of **1** (Litsine E)

Figure S3: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of **1** (Litsine E)

(From δH 2.5 ppm to δH 3.8 ppm)

Figure S4: ¹H-NMR (600 MHz, CDCl₃) spectrum of 1 (Litsine E)

Figure S5: ¹H-NMR (600 MHz, CDCl₃) spectrum of 1 (Litsine E) (From δ H 2.5 ppm to δ H 3.8 ppm)

Figure S6: ¹³C-NMR (150 MHz, DMSO-*d*₆) spectrum of **1** (Litsine E)

Figure S7: ¹³C-NMR (150 MHz, CDCl₃) spectrum of 1 (Litsine E)

Figure S8: HSQC spectrum of 1 (Litsine E)

Figure S9: HMBC spectrum of 1 (Litsine E)

Figure S10: HMBC spectrum of 1 (Litsine E) (Frm δ_C 25 ppm to δ_C 70 ppm)

Figure S11: HMBC spectrum of **1** (Litsine E) (From δ_C 100 ppm to δ_C 160 ppm)

Figure S12: ¹H-¹H COSY spectrum of 1 (Litsine E)

Figure S13: NOESY spectrum of 1 (Litsine E)

Figure S14: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of **2** (Boldine)

Figure S15: ¹³C-NMR (150 MHz, DMSO-*d*₆) spectrum of 2 (Boldine)

Figure S16: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of **3** (Isoboldine)

Figure S17: ¹³C-NMR (150 MHz, DMSO-*d*₆) spectrum of **3** (Isoboldine)

Figure S18: ¹H-NMR (600 MHz, DMSO-*d*₆) spectrum of 4 (Launobine)

Figure S19: ¹³C-NMR (150 MHz, DMSO-*d*₆) spectrum of 4 (Launobine)

Figure S20: Scifinder search report of 1 (Litsine E)

Table S3: ¹H (600 MHz) and ¹³C (150 MHz) NMR data for Litsine E (1) in DMSO-*d*₆ and ¹H (600 MHz) and ¹³C (150 MHz) NMR data for Corybungine G (the most similar compound) in methanol-*d*₄

Desition	$\delta_{\rm C}$, type	$\delta_{\rm C}$, type	$\delta_{ m H} \left(J \text{ in Hz} \right)$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$
rosition	Litsine E (1)	(Corybungine G)	Litsine E (1)	(Corybungine G)
1	142.9, C	144.2		
1 a	114.6, C	117.4		
1b	129.0, C	123.8		
2	146.5, C	149.5		
3	107.3, CH	108.1	6.64, s	6.65, s
3 a	126.5, C	126.4		
4	29.3, CH ₂	28.0	2.52, m 2.73, m	2.87, m 3.21, m
5	48.5, CH ₂	54.1	2.20, m 2.91, m	3.46, dd (11.6, 5.4) 3.09, td (12.0, 3.2)
6a	60.5, CH	63.5	3.01, d (7.3)	3.84, m
7	35.2, CH ₂	32.8	2.20, m 3.22, m	2.67, t (14.0) 3.20, m
7a	123.6, C	126.4	,	- · - •
8	116.2, CH	119.6	6.80, d (8.0)	6.79, s
9	122.8, CH	148.1	6.90, d (8.0)	
10	145.7, C	151.1	,	
11	149.7, C	113.2		7.82, s
11a	128.7, C	126.9		
10-OMe	60.2, CH ₃	56.7	3.65, s	3.86, s
$0.CH_{10}$ (12)	100 5 CH	102.7	6.04, s	6.15, d (1.2)
0-0112-0 (1,2)	$100.3, CH_2$	102.7	5.90, s	6.01, d (1.2)
1'	129.5, C	151.2		
2', 6'	130.4, CH	120.7	7.11, d (8.3)	6.83, m
3', 5'	115.4, CH	117.1	6.72, d (8.2)	6.76, m
4'	156.8, C	154.7		
7'	57.9, CH ₂		3.23, m 4.11, br d (13.5)	3.23, m 4.11, br d (13.5)
N-CH ₃		42.3	(- · -)	2.85, s

The Research method of Cell Viability Assay: The MIN6 cell line was cultured under optimal conditions until reaching the medium logarithmic growth stage. At this stage, cells were harvested and seeded at a density of 10,000 cells per well. Subsequently, 100 μ L of the cell suspension was transferred to a 96-well plate and incubated for 24 hours to allow for cell attachment and growth. On day 2, cells were treated with 300 μ M palmitic acid (PA) along with varying concentrations of the isolated compound for an additional 24 hours. On day 3, the prepared CCK-8 solution (100 μ L per well) was added to the cells. After incubation at 37°C with 5% CO₂ for 1 hour, the optical density (OD) was measured at 450 nm using an enzyme label, and cell viability was subsequently calculated.