Supporting Information

Synthesis of bicyclo[4.2.0]octane ring of kingianin via [2+2] ketene cycloaddition

Mohamad Nurul Azmi ${ }^{1,2^{*}}$ Marc Litaudon, Khalijah Awang ${ }^{4}$ and
Yvan Six ${ }^{2 *}$
${ }^{1}$ Natural Products and Synthesis Organic Laboratory (NPSOLab), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
${ }^{2}$ Laboratoire de Synthèse Organique (LSO), UMR 7652 CNRS/ENSTA/École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
${ }^{3}$ Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR 01, Univ. Paris-Sud 11, Av. de la Terrasse, 91198 Gif-sur-Yvette, France
${ }^{4}$ Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Table of Contents	Page
Synthesis protocol and spectroscopic data analysis	3
Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 6.	17
Figure S2: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 6 .	17
Figure S3: IR spectrum. of compound 6.	18
Figure S4: MS spectrum (positive CI, NH_{3}). of compound 6.	18
Figure S5: HRMS spectrum (EI) of compound 6.	19
Figure S6: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 7.	19
Figure S7: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 7.	20
Figure S8: IR spectrum of compound 7	20
Figure S9: MS spectrum (positive CI, NH_{3}) of compound 7.	21
Figure S10: HRMS spectrum (EI) of compound 7.	21
Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 8.	22
Figure S12: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 8.	22
Figure S13: IR spectrum of compound 8.	23
Figure S14: MS spectrum (positive $\mathrm{CI}, \mathrm{NH}_{3}$) of compound $\mathbf{8}$.	23
Figure S15: HRMS spectrum (EI) of compound 8.	24
Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 10.	24
Figure S17: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 10.	25
Figure S18: MS spectrum (EI) of compound 10.	25
Figure S19: HRMS spectrum (EI) of compound 10.	26
Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 11.	26
Figure S21: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 11.	27
Figure S22: HRMS spectrum (EI) of compound 11.	27
Figure S23: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 13.	28
Figure S24: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 13.	28
Figure S25: MS spectrum (positive $\mathrm{CI}, \mathrm{NH}_{3}$) of compound 13.	29
Figure S26: HRMS spectrum (EI) of compound 13.	29
Figure S27: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 19.	30
Figure S28: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 19.	30
Figure S29: IR spectrum of compound 19.	31
Figure S30: HRMS spectrum (EI) of compound 19	31
Figure S31: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 20.	32

Figure S32: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 20 32
Figure S33: IR spectrum of compound 20 33
Figure S34: MS spectrum (positive CI, NH_{3}) of compound 20. 33
Figure S35: HRMS spectrum (EI) of compound 20. 34
Figure S36: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 21. 34
Figure S37: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 21. 35
Figure S38: IR spectrum of compound 21. 35
Figure S39: MS spectrum (positive $\mathrm{CI}, \mathrm{NH}_{3}$) of compound 21 36
Figure S40: HRMS spectrum (EI) of compound 21. 36
Figure S41: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 5}$. 37
Figure S42: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 25. 37
Figure S43: IR spectrum of compound 25 38
Figure S44: HRMS spectrum (EI) of compound 25. 38
Figure S45: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 26 39
Figure S46: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 26 39
Figure S47: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 29 40
Figure S48: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 29. 40
Figure S49: IR spectrum of compound 29 41
Figure S50: HRMS spectrum (EI) of compound 29. 41
Figure S51: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 0}$. 42
Figure S52: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound $\mathbf{3 0}$. 42
Figure S53: HRMS spectrum (EI) of compound 30. 43
Figure S54: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 31 43
Figure S55: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 31 44
Figure S56: IR spectrum of compound 31. 44

S1:Synthesis protocol and spectroscopic data analysis

S.1.1: Generals

All reactions were carried out in heat-dried glassware under an atmosphere of nitrogen unless otherwise stated. All liquid transfers were conducted using standard syringe or cannula techniques. THF, $\mathrm{Et}_{2} \mathrm{O}$, DCM, toluene and MeOH were purified by a MBraun® Solvent Purification system. DMF and cyclohexane were dried under $4 \AA$ molecular sieves. All other reagents were obtained from Merck, Across, Alfa-Aesar or Aldrich and used as received. Column chromatography was performed on silica gel (Merck, $60 \AA$ C. C. $40-63 \mu \mathrm{~m}$) as the stationary phase. Thin Layer Chromatography (TLC) was performed on alumina plates pre-coated with silica gel (Merck silica gel, $60 \mathrm{~F}_{254}$), which were visualised by the quenching of UV fluorescence when applicable ($\lambda_{\max }=254 \mathrm{~nm}$ and/or 366 nm) and/or by spraying with vanillin or anisaldehyde in acidic ethanol, followed by heating with a heat gun. HRMS was run on a JEOL JMS-GCmate II mass spectrometer. NMR spectra were recorded on a Bruker Avance (400 MHz for ${ }^{1} \mathrm{H}$ NMR, 100.6 MHz for ${ }^{13} \mathrm{C}$ NMR) spectrometer system. Data were analysed via TopSpin software package. Spectra were referenced to TMS or residual solvent $\left(\mathrm{CDCl}_{3}=\right.$ 7.26 ppm in ${ }^{1} \mathrm{H}$ NMR spectroscopy and 77.0 ppm in ${ }^{13} \mathrm{C}$ NMR spectroscopy).

S1.2: Synthetic sequence starting from 4-methoxy-1,4-cyclohexadiene.

7-Chloro-4-methoxy-7-methyl-bicyclo[4.2.0]oct-4-en-8-ones (6 and 7). Triethylamine (1.18 mL , 30.0 mmol) was added to a refluxing mixture of 4-methoxy-1,4-cyclohexadiene $\mathbf{1}(5.59 \mathrm{~g}, 50.8 \mathrm{mmol})$ and 2-chloropropanoyl chloride $5(3.81 \mathrm{~g}, 30.0 \mathrm{mmol})$ in diethyl ether (25 mL). The reaction mixture was stirred at room temperature for 1.5 hrs and then filtered. The solid residue was rinsed with diethyl ether. The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}, 1 \mathrm{M} \mathrm{NaOH}$ and then brine. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the organic layer was concentrated, and the crude product was distilled with a Kugelrohr apparatus at $150{ }^{\circ} \mathrm{C}(0.62 \mathrm{mbar})$ to give a mixture of diastereoisomers $6(2.11 \mathrm{~g}, 35 \%)$ and $7(0.66 \mathrm{~g}, 11 \%)$.
$\left(1 R^{*}, 6 S^{*}, 7 R^{*}\right)$-7-Chloro-4-methoxy-7-methyl-bicyclo[4.2.0]oct-4- en-8one 6

Pale yellow oil. $R_{\mathrm{f}} \approx 0.30$ [UV-active, EtOAc/Pet. ether 5%, anisaldehyde (yellow spot)]. IR (neat): $v_{\text {max }} 2939$ (m), 2855 (w), 2836 (w), 1786 (s, C=O), 1656 (m), 1443 (m), 1380 (m), 1285 (w), 1219 $(\mathrm{m}), 1197(\mathrm{~m}), 1174(\mathrm{~m}), 1139(\mathrm{~m}), 1066(\mathrm{~m}), 1031(\mathrm{~m}), 952(\mathrm{~m}), 826(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 9), 1.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}), 1.95-2.15(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~b}, \mathrm{H} 3), 3.26(1 \mathrm{H}, \mathrm{ddt}, J=10.0,5.0,1.0 \mathrm{~Hz}$, H6), $3.55(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 10)$, 4.12 (1 H , dddd, $J=10.0,6.0,3.5,1.5 \mathrm{~Hz}, \mathrm{H} 1$), 4.73 ($1 \mathrm{H}, \mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}$, H5). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) 19.2 (C9), 19.4 (C3), 24.7 (C2), 40.7 (C6), 53.9 (C1), 54.1 (C10), 77.3 (C7),
90.3 (C5), 158.7 (C4), 206.1 (C8). MS m / z (positive CI, NH_{3}) 110, 129, 137, 165, 167, 183, $201\left(\mathrm{MH}^{+}\right.$ with ${ }^{35} \mathrm{Cl}$), 202, $203\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{37} \mathrm{Cl}\right), 204,222,257$. MS m / z (EI) 105, 109, 110, 111, 112, 113, 125, 132, 135, 137, 147, 150, 151, 162, 170, 182, 200 ($\mathrm{M}^{+\bullet}$ with ${ }^{35} \mathrm{Cl}$), 202 ($\mathrm{M}^{+\bullet}$ with ${ }^{37} \mathrm{Cl}$). HRMS m / z (EI): $200.0599\left(\mathrm{M}^{+\cdot} \mathrm{C}_{10} \mathrm{H}_{13}{ }^{35} \mathrm{ClO}_{2}{ }^{+\bullet}\right.$ requires 200.0599).

NOESY ($\mathbf{C D C l}_{3}$) Observed correlations: H5-H9, H5 - H10.
Correlations not observed: H1-H9, H6 - H9.
$\left(1 R^{*}, 6 S^{*}, 7 S^{*}\right)$-7-Chloro-4-methoxy-7-methyl-bicyclo[4.2.0]oct-4- en-8one 7

Pale yellow oil. $R_{\mathrm{f}} \approx 0.20$ [UV-active, $\mathrm{EtOAc} /$ Pet. ether 5%, anisaldehyde (dark orange spot)]. IR (neat): $v_{\max } 3049$ (m), 2984 (m), 2306 (m), 2685 (w), 1796 (m, C=O), 1723 (m) 1688 (w), 1443 (m), 1422 (m), 1263 (s), 1155 (w) 1070 (w) 1024 (w), 895 (m) cm ${ }^{-1} . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{C D C l}_{3}$) 1.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}$), 1.77 (3H, s, H9), $1.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{a}), 2.05-2.17(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~b}, \mathrm{H} 3 \mathrm{~b}), 3.05(1 \mathrm{H}, \mathrm{ddt}, J=10.0,5.0,1.0$ $\mathrm{Hz}, \mathrm{H} 6), 3.54(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 10), 3.67(1 \mathrm{H}$, distorted dddd, $J=10.0,6.0,3.0,1.0 \mathrm{~Hz}, \mathrm{H} 1), 4.69(1 \mathrm{H}, \mathrm{dd}, J=$ $5.0,1.5 \mathrm{~Hz}, \mathrm{H} 5) .{ }^{13} \mathbf{C}$ NMR (CDCl_{3}) 19.8 (C3), 24.3 (C2), 26.2 (C9), 38.5 (C6), 51.6 (C1), 54.2 (C10), 77.4 (C7), 91.4 (C5), 157.6 (C4), 206.7 (C8). MS m/z (positive CI, NH3) 110, 137, 158, 165, 167, 183, $201\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{35} \mathrm{Cl}\right), 202,203\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{37} \mathrm{Cl}\right), 204,206,218\left(\mathrm{MH}^{+} . . \mathrm{NH}_{3}\right.$ with $\left.{ }^{35} \mathrm{Cl}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (EI) $109,110,111,112,113,125,132,135,137,150,151,158,162,182,200\left(\mathrm{M}^{+\cdot}\right.$ with $\left.{ }^{35} \mathrm{Cl}\right), 202$ ($\mathrm{M}^{+\bullet}$ with ${ }^{37} \mathrm{Cl}$). HRMS m/z(EI): $200.0606\left(\mathrm{M}^{+\cdot} \mathrm{C}_{10} \mathrm{H}_{13}{ }^{35} \mathrm{ClO}_{2}{ }^{+\bullet}\right.$ requires 200.0599).

NOESY ($\mathbf{C D C l}_{3}$) Observed correlations: H5 - H10 (very intense), H6 - H9 (moderate).
Correlation not observed: H5 - H9.

4-Methoxy-7-methyl-bicyclo[4.2.0]oct-4-en-8-one (8). To mixture of 2.00 g (30.7 mmol) of Zn dust and 4.5 mL of TMEDA (29.0 mmol) in 10 mL of absolute EtOH at $0^{\circ} \mathrm{C}$ was added $2.00 \mathrm{~mL}(33.0$ $\mathrm{mmol})$ of AcOH . The reaction mixture was maintained at $0^{\circ} \mathrm{C}$ while a solution of enol ether $6(1.10 \mathrm{~g}$, 5.0 mmol) in 2.0 mL of EtOH was added over 10 min period. After an additional 15 min at $0^{\circ} \mathrm{C}$ the reaction mixture was allowed to warm to room temperature and stirred for 15 min . The resulting grey mixture was filtered, and the solid residue was rinsed with diethyl ether. The filtrated was washed with ice cold $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and sat. $\mathrm{NaCl}(10 \mathrm{~mL})$. The resulting material was dried over MgSO_{4} and concentrated under reduced pressure to afford $0.37 \mathrm{~g}(45 \%)$ of desired enol ether $\mathbf{8}$ which was of sufficient purity for subsequent transformation.

Colourless oil. $R_{\mathrm{f}} \approx 0.30$ [UV-active, EtOAc/Pet. ether 5%, anisaldehyde (yellow spot)]. IR (neat): $\nu_{\max } 3020$ (s), 2985 (m), 2401 (w), 1771 (s, C=O), 1713 (s$), 1553$ (m), 1422 (m), 1264 (s$), 1216$ (s$)$, $1017(\mathrm{~m}), 890(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H} 9), 1.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}), 1.87(1 \mathrm{H}$, m, H3a), 1.98-2.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~b}, \mathrm{H} 3 \mathrm{~b}$), 3.07 ($1 \mathrm{H}, \mathrm{qd}, J=8.4,4.6 \mathrm{~Hz}, \mathrm{H} 7$), 3.31 ($1 \mathrm{H}, \mathrm{td}, J=9.1,4.6$ $\mathrm{Hz}, \mathrm{H} 6), 3.47(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 10), 3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 4.55(1 \mathrm{H}, \mathrm{dd}, J=4.6,2.0 \mathrm{~Hz}, \mathrm{H} 5) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right)$ 8.8 (C9), 19.2 (C2), 24.6 (C3), 27.6 (C7), 53.9 (C10), 54.5 (C1), 56.0 (C6), 91.0 (C5), 157.4 (C4), 213.9 (C8). MS $\boldsymbol{m} / \boldsymbol{z}$ (positive CI, NH ${ }_{3}$) $165,167\left(\mathrm{MH}^{+}\right), 171,172,183,200$. MS $\boldsymbol{m} / \boldsymbol{z}$ (EI) 109, 114, $\underline{121}, 124,135,137,151,152,161,166\left(\mathrm{M}^{+\bullet}\right)$. HRMS $\boldsymbol{m} / \boldsymbol{z}(\mathbf{E I}): 166.0993\left(\mathrm{M}^{+\cdot} \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}{ }^{+\bullet}\right.$ requires 166.0989).

7-Methyl-4-oxobicyclo[4.2.0]octan-8-ylidene)butanoic acid (10). To a stirred slurry of (3-carboxypropyl)-triphenylphosphonium bromide (9) ($2.11 \mathrm{~g}, 4.9 \mathrm{mmol}$) in dry THF (10 mL) under nitrogen at $-75^{\circ} \mathrm{C}$ was added potassium tert-butoxide ($1.38 \mathrm{~g}, 12.3 \mathrm{mmol}$). After 15 min at $-75^{\circ} \mathrm{C}$, a solution of enol ether $\mathbf{8}(0.68 \mathrm{~g}, 4.1 \mathrm{mmol})$ in dry THF $(5.0 \mathrm{~mL})$ was added to a mixture and stirred at $-75^{\circ} \mathrm{C}$ for 10 min . The mixture was continuously stirred at room temperature overnight. The mixture was pouring into $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (30 mL), washed with ethyl acetate (30 mL mL), and then acidified with conc. HCl . The aqueous layer was extracted with ether $(3 \times 50 \mathrm{~mL})$ and the combined extracts were concentrated to 20 mL and kept at $-20^{\circ} \mathrm{C}$ for 2 hrs . The resulting precipitate was filtered off and discarded. Evaporation of the filtrate gave a yellowish oil (0.79 g) which was purified by column chromatography on silica gel, eluted with petroleum ether/ethyl acetate (7:3) to give the desired product 10 as a mixture of the two geometrical isomers (1:1) ($0.46 \mathrm{~g}, 51 \%$).
$\left(1 R^{*}, 6 S^{*}, 7 R^{*}\right)$-7-Methyl-4-oxobicyclo[4.2.0]octan-8ylidene)butanoic acid 10

Yellowish oil. $R_{\mathrm{f}} \approx 0.20$ [UV-active, EtOAc/Pet. ether 50%, anisaldehyde (violet spot)]. IR (neat): $v_{\text {max }} 2950(\mathrm{~m}), 2362(\mathrm{w}), 1736(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1708(\mathrm{~m}, \mathrm{C}=\mathrm{O}), 1438(\mathrm{w}), 1170(\mathrm{~m}), 923(\mathrm{w}), 634(\mathrm{w}) \mathrm{cm}^{-1}$. ${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right) 1.13(3 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H} 9), 1.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}), 2.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~b}), 2.24(1 \mathrm{H}, \mathrm{m}$, H3b), 2.31 - 2.47 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H} 5, \mathrm{H} 11, \mathrm{H} 12 \mathrm{a}$), $2.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \mathrm{~b}), 2.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 12 \mathrm{~b}), 2.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6)$, $3.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 3.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 5.22(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H} 10) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) 13.5(\mathrm{C} 9), 23.2$ (C2), 23.5 (C11), 31.7 (C6), 34.5 (C12), 36.8 (C3), 37.8 (C1), 38.2 (C5), 38.5 (C7), 121.5 (C10), 148.4 (C8), 178.5 (C13), 214.5 (C4). MS $\boldsymbol{m} / \boldsymbol{z}$ (EI) 167,177, 195, 205, 221, $223\left(\mathrm{MH}^{+}\right), 240,241,256$. HRMS $\boldsymbol{m} / \boldsymbol{z}(\mathbf{E I}): 222.1252\left(\mathrm{M}^{+\bullet} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}{ }^{+\bullet}\right.$ requires 222.1251).

Methyl-(\{7-methyl-4-oxobicyclo[4.2.0]octan-8-yl\})butanoate (11). To a solution of the bicycloalkene $10(0.24 \mathrm{~g}, 1.1 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w}, 0.02 \mathrm{~g})$, and the resulting mixture was hydrogenated at 1 atm for 12 hrs . Filtration through Celite and evaporation of the filtrate in vacuo afforded $\mathbf{1 1}$ as a yellowish oil ($0.21 \mathrm{~g}, 80 \%$).
Methyl- $\left(\left\{\left(1 R^{*}, 6 S^{*}, 7 R^{*}\right)\right.\right.$-7-methyl-4-oxobicyclo[4.2.0] octan-8-
yl\} butanoate $\mathbf{1 1}$

Yellowish oil. $R_{\mathrm{f}} \approx 0.40$ [non UV-active, EtOAc/Pet. ether 50%, anisaldehyde (red-violet spot)]. IR (neat): $v_{\text {max }} 2933(\mathrm{~m}), 1738(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1714(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1455(\mathrm{w}), 1436(\mathrm{w}), 1377(\mathrm{w}), 1197(\mathrm{~m}), 1170$ (m), $1112(\mathrm{w}), 1015(\mathrm{w}), 883(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right) 1.05(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H} 9), 1.46(2 \mathrm{H}, \mathrm{m}$, H10), 1.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 11$), $1.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}), 1.97-2.06(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~b}, \mathrm{H} 3 \mathrm{a}), 2.19(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5 \mathrm{a}), 2.34$ ($2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H} 12$), $2.40-2.62(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 3 \mathrm{~b}, \mathrm{H} 5 \mathrm{~b}, \mathrm{H} 8), 2.72(1 \mathrm{H}, \mathrm{qd}, J=8.1,2.0 \mathrm{~Hz}, \mathrm{H} 7$), $2.79(1 \mathrm{H}, \mathrm{q}, J=8.1 \mathrm{~Hz}, \mathrm{H} 6), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 14)$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}\right) 12.3$ (C9), 22.1 (C2), 23.9 (C11), 26.0 (C10), 31.3 (C6), 34.2 (C12), 32.7 (C7), 34.4 (C1), 37.2 (C8), 37.4 (C5), 38.4 (C3), 51.5 (C14), 173.8 (C13), 214.4 (C4). MS $\boldsymbol{m} / \mathbf{z}$ (EI) 110, 123, 135, 151, 162, 182, 195, 206, 224, 236, $238\left(\mathrm{M}^{+}\right)$. HRMS $\boldsymbol{m} / \boldsymbol{z}(\mathbf{E I}): 238.1562\left(\mathrm{M}^{++} \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}{ }^{+\bullet}\right.$ requires 238.1563).

Methyl-\{5-bromo-7-methyl-4-oxobicyclo[4.2.0]octan-8-yl\})butanoate (13). To a stirred solution of the bicyclic ketone $11(0.19 \mathrm{~g}, 0.8 \mathrm{mmol})$ in dry THF (10 mL) at $-75{ }^{\circ} \mathrm{C}$ under argon was added phenyltrimethylammonium tribromide ($298 \mathrm{mg}, 0.79 \mathrm{mmol}$). The mixture was stirred at $-75^{\circ} \mathrm{C}$ for 20 min and then allowed to slowly warm to room temperature over 30 min . Brine (10 mL) was added, and then the resulting mixture was extracted with ether $(2 \times 20 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give an orange oil $(0.23 \mathrm{~g})$. Analysis by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy revealed that this crude product contained mostly the bromoketone 13.

Methyl-\{($\left.1 R^{*}, 6 S^{*}, 7 R^{*}\right)$-5-bromo-7-methyl-4-oxobicyclo [4.2.0]octan-8-yl\})butanoate $\mathbf{1 3}$	

Orange oil. $R_{\mathrm{f}} \approx 0.15$ [non UV-active, EtOAc/Pet. ether 30%, anisaldehyde (red-violet spot)]. IR (neat): $v_{\max } 2937$ (m), 1738 (s, C=O), 1731 (s, C=O), 1455 (w), 1436 (w), 1379 (w), 1246 (w), 1170 (w), 1066 (w), $1030(\mathrm{w}), 884(\mathrm{w}), 755(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}\right) 1.24(3 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 9), 1.49$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 10$), $1.58(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 11), 1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}), 2.15(1 \mathrm{H}, \mathrm{dd}, J=8.2,5.4 \mathrm{~Hz}, \mathrm{H} 2 \mathrm{~b}), 2.37(2 \mathrm{H}, \mathrm{m}$, H12), 2.49 ($1 \mathrm{H}, \mathrm{dd}, J=8.2,5.4 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{a}), 2.62-2.68(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 3 \mathrm{~b}, \mathrm{H} 8), 2.89(1 \mathrm{H}, \mathrm{qd}, J=8.2,2.9$ $\mathrm{Hz}, \mathrm{H} 7), 3.04(1 \mathrm{H}, \mathrm{q}, J=8.2 \mathrm{~Hz}, \mathrm{H} 6), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 4.86(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H} 5) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) 11.5$ (C9), 22.4 (C2), 23.7 (C11), 25.3 (C10), 33.1 (C7), 34.1 (C12), 36.2 (C8), 37.0 (C1), 37.6 (C3), 41.9 (C6), 51.6 (C14), 53.5 (C5), 174.0 (C13), 203.6 (C4). MS m/z (positive CI, NH3) 223, 237, 239, 255, 271, 287, $317\left(\mathrm{MH}^{+}\right), 333,334\left(\mathrm{MH}^{+} . . \mathrm{NH}_{3}\right), 335,336 . \mathbf{M S} \boldsymbol{m} / \boldsymbol{z}$ (EI) 110, 123, 142, 151, 177, 187, 205, 237, 259, 287, 299, $316\left(\mathrm{M}^{+\bullet}\right.$ with $\left.{ }^{79} \mathrm{Br}\right), 318\left(\mathrm{M}^{+\cdot}\right.$ with $\left.{ }^{81} \mathrm{Br}\right)$. HRMS $\boldsymbol{m} / \boldsymbol{z}$ (EI): $316.0670\left(\mathrm{M}^{+\cdot} \mathrm{C}_{14} \mathrm{H}_{21}{ }^{79} \mathrm{BrO}_{3}{ }^{+\bullet}\right.$ requires 316.0669$)$.

3.0 Synthetic sequence involving cycloaddition with 1,3-cyclohexadiene.

Piperonyl chloride (20). Piperonyl alcohol (22) (10.0 g, 65.7 mmol) was dissolved in dry toluene $(100 \mathrm{~mL})$. Triethylamine $(7.98 \mathrm{~g}, 78.9 \mathrm{mmol})$ and thionyl chloride $(15.6 \mathrm{~g}, 131 \mathrm{mmol})$ were added. The reaction mixture was stirred for 24 hrs at $0{ }^{\circ} \mathrm{C}$ and then washed with saturated NaHCO_{3} $(2 \times 100 \mathrm{~mL})$ and extracted with ethyl acetate. The combined organic layers were dried over MgSO_{4} and concentrated under vacuum to give the desired product 20 as a brown oil ($10.9 \mathrm{~g}, 98 \%$) which was of sufficient purity for subsequent transformation.
Piperonyl chloride 20 (s)

Pale yellow oil. $R_{\mathrm{f}} \approx 0.30$ [UV-active, $\mathrm{EtOAc} /$ Pet. ether 5%, anisaldehyde (dark blue spot)]. IR (neat): $v_{\max } 2962$ (w), 2886 (m, C-H aromatic), 2777 (w), 1504 (s), 1491 (s), 1447 (s), 1363 (s), 1251 (s), 1194 (m), $1100(\mathrm{~m}), 1043\left(\mathrm{~s}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 947(\mathrm{~m}), 932\left(\mathrm{~s}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right) \mathrm{cm}^{-1} . \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) 4.41$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 5.84(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 8), 6.64-6.77(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 3, \mathrm{H} 6, \mathrm{H} 7) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) 46.5(\mathrm{C} 1), 101.2$ (C8), 108.1 (C6), 109.0 (C3), 122.2 (C7), 131.2 (C2), 147.7 (C4), 147.8 (C5). MS m/z (positive CI, $\left.\mathbf{N H}_{3}\right) 118,136,148,152,161,171\left(\mathrm{MH}^{+}\right), 172,180,208,225 . \operatorname{MS} \boldsymbol{m} / \boldsymbol{z}$ (EI) 105, 117, 121, 135, 136, $170\left(\mathrm{M}^{+\cdot}\right.$ with $\left.{ }^{35} \mathrm{Cl}\right), 171,172\left(\mathrm{M}^{+\bullet}\right.$ with $\left.{ }^{37} \mathrm{Cl}\right)$. HRMS $\boldsymbol{m} / \boldsymbol{z}(\mathbf{E I}): 170.0137\left(\mathrm{M}^{+\cdot} \mathrm{C}_{8} \mathrm{H}_{7}{ }^{35} \mathrm{ClO}_{2}{ }^{+\bullet}\right.$ requires 170.0129).

Ethyl-2-chloro-3-oxobutanoate (21). Sulfuryl chloride (11.4 g, 84.5 mmol) was added dropwise by dropping funnel to ethyl acetoacetate $23(10.0 \mathrm{~g}, 76.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL})$ and maintained at 0 ${ }^{\circ} \mathrm{C}$. The mixture was stirred overnight at room temperature. The mixture was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times$ 100 mL), dried over MgSO_{4} and concentrated under vacuum to give the desired product 21 as a yellowish oil ($12.3 \mathrm{~g}, 98 \%$) which was of sufficient purity for subsequent transformation.

Ethyl-2-chloro-3-oxobutanoate 21

Pale yellow oil. IR (neat): $v_{\max } 2985$ (m), 2941 (w), 1735 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1645 (w), 1616 (w), 1445 (w), 1369 (m) , 1255 (s), 1163 (s), 1096 (w), 1070 (w), 1034 (m) cm ${ }^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) 1.23-1.31 (3H, m, H6), $2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 1), 4.20-4.34(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 4.71(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 3) .{ }^{13} \mathbf{C} \mathbf{~ N M R}$ ($\mathbf{C D C l}_{3}$) 13.5 (C6), 25.9 (C 1), 61.0 (C3), 62.7 (C5), 164.6 (C4), 196.1 (C2). MS $\boldsymbol{m} / \boldsymbol{z}$ (positive CI, NH3) 103, 135, 137, 148, $152,162,165\left(\mathrm{MH}^{+}\right), 170,182,184 . \operatorname{MS} m / z(E I) 118,120,121,122,124,136,164\left(\mathrm{M}^{+\bullet}\right.$ with $\left.{ }^{35} \mathrm{Cl}\right)$, $166\left(\mathrm{M}^{+\bullet}\right.$ with $\left.{ }^{37} \mathrm{Cl}\right)$. HRMS $\boldsymbol{m} / \boldsymbol{z}(\mathbf{E I}): 164.0245\left(\mathrm{M}^{+\cdot} \mathrm{C}_{6} \mathrm{H}_{9}{ }^{35} \mathrm{ClO}_{3}{ }^{+\bullet}\right.$ requires 164.0235).

2-Chloro-3-(3,4-methylenedioxyphenyl)propanoic acid (19). A solution of ethyl 2-chloroacetoacetate (21) $(2.47 \mathrm{~g}, 15.0 \mathrm{mmol})$ in DMF $(25 \mathrm{~mL})$ was treated with $60 \% \mathrm{NaH}$ in oil $(0.60 \mathrm{~g}, 15.0$ $\mathbf{m m o l}$) at room temperature for 20 min . A solution of 3,4-methylenedioxybenzyl chloride (20) (2.56 g , $15.0 \mathrm{mmol})$ in DMF $(5.0 \mathrm{~mL})$ was added thereto, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hrs , poured into ice $-\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{EtOAc}(100 \mathrm{~mL})$. The extract was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under vacuum to give the desired product 24 as a brown oil, which was of sufficient purity for subsequent transformation.

A stirred solution of crude product 24 in $\mathrm{EtOH}(50.00 \mathrm{~mL})$ was treated with $2 \mathrm{~N} \mathrm{NaOH}(20 \mathrm{~mL})$ at room temperature for 1 h . The solvent was removed at reduced pressure, and the residue was taken up with $\mathrm{EtOAc}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The aqueous phase was acidified with conc. $\mathrm{HCl}(5.0 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated at reduced pressure to give solid 19 ($3.10 \mathrm{~g}, 90 \%$).

Ethyl 2-acetyl-2-chloro-3-(3,4-methylenedioxyphenyl) propionate 24

Brown liquid. ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}\right) 1.20(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{H} 12), 2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 14), 3.33(2 \mathrm{H}, \mathrm{AB}$ system, $\left.\delta_{\mathrm{A}} 3.26, \delta_{\mathrm{B}} 3.38, J_{\mathrm{AB}}=16.1 \mathrm{~Hz}, \mathrm{H} 3\right), 4.17(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{H} 11), 5.89(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 10), 6.57-$ $6.66(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 5, \mathrm{H} 6, \mathrm{H} 9) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) 13.8 (C12), 26.3 (C14), 41.8 (C3), 63.0 (C11), 75.4 (C2), 101.0 (C10), 107.9 (C6), 110.1 (C9), 123.8 (C5), 127.4 (C4), 147.0 (C7), 147.4 (C8), 166.8 (C1), 198.4 (C13).
2-chloro-3-(3,4-methylenedioxyphenyl)propanoic acid 19 (20)

Amorphous white solid. $R_{\mathrm{f}} \approx 0.15$ [non UV-active, EtOAc/Pet. ether 50%, anisaldehyde (red-violet spot)]. IR (neat): $v_{\text {max }} 3155(\mathrm{w}), 2895(\mathrm{w}), 2902(\mathrm{w}), 2253$ (s, C=O), 1795 (w), 1728 (w), 1490 (w), $1469(\mathrm{~m}), 1447$ (w), 1384 (m), 1166 (w), $1097(\mathrm{~m}), 1044\left(\mathrm{w}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}\right) 3.21$ ($2 \mathrm{H}, \mathrm{AB}$ part of an ABX system, $\left.\delta_{\mathrm{A}} 3.12, \delta_{\mathrm{B}} 3.31, J_{\mathrm{AB}}=14.1, J_{\mathrm{AX}}=7.7, J_{\mathrm{BX}}=7.7 \mathrm{~Hz}, \mathrm{H} 3\right), 4.44(1 \mathrm{H}$, $\mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H} 2), 5.95(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 10), 6.70(1 \mathrm{H}, \mathrm{dd}, J=7.3,1.6 \mathrm{~Hz}, \mathrm{H} 9), 6.73(1 \mathrm{H} . \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-5)$, $6.76(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{H}-8) .{ }^{13} \mathbf{C}$ NMR (CDCl ${ }_{3}$) 40.6 (C3), 57.2 (C2), 101.1 (C10), 108.5 (C8), 109.7 (C5), 122.7 (C9), 129.1 (C4), 147.0 (C7), 147.9 (C6), 173.3 (C1). MS $\boldsymbol{m} / \boldsymbol{z}$ (positive CI, $\mathbf{N H}_{3}$) 135, 137, 152, 175, 192, 195, 210, $229\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{35} \mathrm{Cl}\right), 230,246,248$. MS m/z (EI) 117, 120, 122, 135, 136, 152, 170, 175, 192, 220, 118, $228\left(\mathrm{M}^{+\cdot}\right.$ with ${ }^{35} \mathrm{Cl}$), $230\left(\mathrm{M}^{+\cdot}\right.$ with $\left.{ }^{37} \mathrm{Cl}\right)$. HRMS \mathbf{m} / z (EI): $228.0186\left(\mathrm{M}^{+\cdot} \mathrm{C}_{10} \mathrm{H}_{9}{ }^{35} \mathrm{ClO}_{4}{ }^{+\bullet}\right.$ requires 228.0184).

7-Chloro-7-(3,4-methylenedioxyphenyl)bicyclo[4.2.0]oct-4-en-8-one (25). The 2-chlorocarboxylic acid $19(0.46 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added to $2.0 \mathrm{~mL}(28.0 \mathrm{mmol})$ of SOCl_{2}, and the reaction solution heated under reflux condition for 3 hrs . The reaction solution was cooled, and the solvent was removed in vacuo. The residue was then dissolved in cyclohexane (5.0 mL).

The residue and cyclohexadiene $15(504 \mathrm{mg}, 6.3 \mathrm{mmol})$ was treated with triethylamine $(0.44 \mathrm{~g}, 4.3$ mmol) within 10 min . The reaction mixture was stirred at reflux for 3 hrs and then filtered. The solid residue was rinsed with cyclohexane $(5.0 \mathrm{~mL})$. The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL}), 1 \mathrm{M}$ $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (20 mL). After drying over MgSO_{4}, the organic layer was concentrated and the crude product was purified by column chromatography on silica gel, eluting with petroleum ether/ethyl acetate (95:5) to afford $25(0.15 \mathrm{~g}, 25 \%)$.
$\left(1 R^{*}, 6 S^{*}, 7 S^{*}\right)$-7-Chloro-7-(3,4-methylenedioxyphenyl)bicyclo
[4.2.0]oct-4-en-8-one 25

Yellowish oil. $R_{\mathrm{f}} \approx 0.40$ [UV-active, EtOAc/Pet. ether 15%, anisaldehyde (violet spot)]. IR (neat): $v_{\max } 3030$ (w), 2932 (m), 2775 (w), 1788 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1742 (s), 1505 (s), 1490 (s), 1445 (s), 1249 (s), 1239 (s), 1191 (w), 1120 (w), 1045 (s) cm ${ }^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}\right) 1.47(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}), 1.91-2.01(3 \mathrm{H}, \mathrm{m}$, H2b, H3), $2.96(2 \mathrm{H}, \mathrm{dd}, J=6.0,4.4 \mathrm{~Hz}, \mathrm{H} 9), 3.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 4.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 5.81(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 16)$, $5.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 5.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 6.64(2 \mathrm{H}, \mathrm{d}, J=8.0, \mathrm{H} 11, \mathrm{H} 12), 6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 15) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) 18.5 (C2), 21.1(C3), 37.0 (C9), 40.6 (C6), 54.4 (C1), 80.2 (C7), 100.7 (C16), 107.7 (C12), 110.4 (C15), 123.1 (C5), 124.1 (C4), 128.7 (C10), 132.1 (C11), 146.2 (C13), 147.2 (C14), 204.6 (C8). MS $\boldsymbol{m} / \boldsymbol{z}$ (positive CI, $\mathbf{N H}_{3}$) 108, 136, 170, 255, 274, $291\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{35} \mathrm{Cl}\right), 293\left(\mathrm{MH}^{+}\right.$with $\left.{ }^{37} \mathrm{Cl}\right), 308$ $\left(\mathrm{MH}^{+} . . \mathrm{NH}_{3}\right.$ with $\left.{ }^{35} \mathrm{Cl}\right), 310\left(\mathrm{MH}^{+} . . \mathrm{NH}_{3}\right.$ with $\left.{ }^{37} \mathrm{Cl}\right), 342$. MS $\boldsymbol{m} / \boldsymbol{z}$ (EI) $105,135,136,149,170,179$, 210, 235, 255. 267, $290\left(\mathrm{M}^{+\bullet}\right.$ with $\left.{ }^{35} \mathrm{Cl}\right)$. HRMS $\boldsymbol{m} / \boldsymbol{z}$ (EI): $290.0711\left(\mathrm{M}^{+\bullet} \mathrm{C}_{16} \mathrm{H}_{15}{ }^{35} \mathrm{ClO}_{3}{ }^{+\bullet}\right.$ requires 290.0704).

7-(3,4-Methylenedioxyphenyl)bicyclo[4.2.0]oct-4-en-8-one (26). To a mixture of Zn dust (43.3 mmol, 1.30 g) and TMEDA ($20.1 \mathrm{mmol}, 3.00 \mathrm{~mL}$) in absolute EtOH (7.0 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{AcOH}(30.9 \mathrm{mmol}, 1.50 \mathrm{~mL})$. The reaction mixture was maintained at $0{ }^{\circ} \mathrm{C}$ while a solution of cyclobutanone $25(1.00 \mathrm{~g}, 3.44 \mathrm{mmol})$ in $\mathrm{EtOH}(3.0 \mathrm{~mL})$ was added over a 10 min period. After an additional 15 min at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to room temperature and further stirred for 2 hrs. The resulting grey mixture was filtered, and the solid residue was rinsed with diethyl ether. The filtrate was washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and sat $\mathrm{NaCl}(10 \mathrm{~mL})$. The resulting material was dried over MgSO_{4} and concentrated under reduced pressure to afford $0.78 \mathrm{~g}(88 \%)$ of desired cyclobutanone 26 which was of sufficient purity for subsequent transformation.
$\left(1 R^{*}, 6 S^{*}, 7 S^{*}\right)$-7-(3,4-Methylenedioxyphenyl)
bicyclo[4.2.0]oct-4-en-8-one 26

Yellowish oil. $R_{\mathrm{f}} \approx 0.35$ [UV-active, EtOAc/Pet. ether 15%, anisaldehyde (violet spot)]. IR (neat): $v_{\max } 3025$ (m), 2931 (s), 2653 (m), 2774 (m), 1773 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1645 (w), 1610 (w), 1505 (s), 1489 (s), 1445 (s), 1413 (w), 1366 (w), 1293 (w), 1247 (s), 1189 (m), 1099 (m), 1043 (s), 942 (m) cm ${ }^{-1} .{ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) $1.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}), 1.87-2.02(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{~b}, \mathrm{H} 3), 2.60(2 \mathrm{H}, \mathrm{AB}$ part of an ABX system, $\left.\delta_{\mathrm{A}} 2.73, \delta_{\mathrm{B}} 2.49, J_{\mathrm{AB}}=15.0, J_{\mathrm{AX}}=5.7, J_{\mathrm{BX}}=9.7 \mathrm{~Hz}, \mathrm{H} 9\right), 3.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 3.50-3.55(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$, H7), $5.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 5.84(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 16), 5.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 6.55-6.66(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 11, \mathrm{H} 12, \mathrm{H} 15) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $18.5(\mathrm{C} 2), 21.3(\mathrm{C} 3), 27.7(\mathrm{C} 6), 30.3(\mathrm{C} 9), 55.0(\mathrm{C} 7), 61.9$ (C1), 100.8 (C16), 108.1 (C12), 108.7 (C15), 121.0 (C11), 125.8 (C4), 130.4 (C5), 133.5 (C10), 145.7 (C13), 147.5 (C14), 212.3 (C8). MS m/z (positive CI, NH3) 136, 149, 157, 177, 183, 202, 211, 228, 240, $257\left(\mathrm{MH}^{+}\right), 274$ $\left(\mathrm{MH}^{+} . . \mathrm{NH}_{3}\right)$, 275. MS $\boldsymbol{m} / \boldsymbol{z}$ (EI) 105, 122, 135, 148, 175, 176, 186, 210, 220, 236, $256\left(\mathrm{M}^{+\bullet}\right), 258$. HRMS $\boldsymbol{m} / \boldsymbol{z}$ (EI): $256.1097\left(\mathrm{M}^{+\bullet} \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}{ }^{+\bullet}\right.$ requires 256.1094).

7-(3,4-Methylenedioxyphenyl)bicyclo[4.2.0]oct-4-ene-8-carbaldehyde (29). To a stirred slurry of (methoxymethyl)-triphenylphosphonium chloride $27(0.58 \mathrm{~g}, 1.7 \mathrm{mmol})$ in dry THF (7.0 mL) at $-75^{\circ} \mathrm{C}$ was added potassium tert-butoxide $(0.14 \mathrm{~g}, 1.3 \mathrm{mmol})$. After 15 min at $-75^{\circ} \mathrm{C}$, a solution of bicyclo[4.2.0] oct-4-en-8-one $26(0.22 \mathrm{~g}, 0.86 \mathrm{mmol})$ in dry THF (3.0 mL) was added to the mixture, which was further stirred at $-75^{\circ} \mathrm{C}$ for 10 min , and then at room temperature overnight. The mixture was diluted with water (20 mL) and extracted with ether $(30.00 \mathrm{~mL})$. The organic extract was washed with brine ($2 \times 20 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure to give $\mathbf{2 8}$ as a yellowish oil, which was used as such in the next transformation.

The crude bicyclo[4.2.0]oct-4-ene $\mathbf{2 8}$ was stirred with 90% formic acid (10 mL) at room temperature for 1 h . The mixture was poured into a saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to afford a yellowish oil. Purification by column chromatography on silica gel, eluting with petroleum ether/ethyl acetate (95:5), gave the desired product 29 as a yellowish oil ($94 \mathrm{mg}, 41 \%, d r$ 1:2).
$\left(1 R^{*}, 6 S^{*}, 7 S^{*}\right)$-8-(Methoxymethylene)-7-(3,4-methylenedioxy
phenyl)bicyclo[4.2.0]oct-4-ene 28

Yellowish oil. $R_{\mathrm{f}} \approx 0.50$ [UV-active, EtOAc/Pet. ether 10%, anisaldehyde (violet spot)]. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}\right) 1.90-1.45(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 3), 2.39-2.78(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 6, \mathrm{H} 9), 3.32-3.60(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 7), 4.07$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H} 18$), $5.10(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 17), 5.52-5.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4, \mathrm{H} 5), 5.85(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 16) 6.49-6.68(3 \mathrm{H}, \mathrm{m}$, H11, H12, H15). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) 20.7 (C3), 21.9 (C2), 34.2 (C6), 35.2 (C9), 37.4 (C7), 44.8 (C1), 59.7 (C18), 100.6 (C16), 108.0 (C12), 108.9 (C15), 121.2 (C11), 126.8 (C4), 128.8 (C8), 131.4 (C5), 133.7 (C10), 139.6 (C17), 145.4 (C13), 147.6 (C14).
$\left(1 R^{*}, 6 S^{*}, 7 S^{*}\right)$-7-(3,4-Methylenedioxyphenyl)bicyclo[4.2.0]oct-4-ene-8-
carbaldehyde 29

Yellowish oil. IR (neat): $v_{\max } 2928$ (m), 1717 (s, C=O), 1504 (m), 1484 (s), 1444 (w), 1372 (w), 1226 (m), 1179 (m), 1039 (m, O-CH2-O), 1096 (w), 939 (m, m, O-CH2-O), 8669 (w) $\mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 0.75-2.45(10 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 6, \mathrm{H} 7, \mathrm{H} 8, \mathrm{H} 9), 5.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 5.82(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 16)$, $5.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 6.47-6.74(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 11, \mathrm{H} 12, \mathrm{H} 15), 9.33(1 \mathrm{H}, \mathrm{s}, \mathrm{H} 17) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) 21.2 (C3), 29.8 (C2), 31.2 (C9), 34.4 (C6), 36.7 (C1), 41.1 (C7), 51.8 (C8), 100.7 (C16), 108.3 (C12), 109.7 (C15), 121.2 (C11), 126.4 (C5), 129.5 (C4), 130.6 (C10), 145.8 (C13), 146.7 (C14), 202.6 (C17). MS m/z (EI) 115, 135, 173, 190, 224, 252, $270\left(\mathbf{M}^{+\bullet}\right), 298,304$ HRMS $\boldsymbol{m} / \boldsymbol{z}$ (EI): 270.1262 $\left(\mathrm{M}^{+\cdot} \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}{ }^{+\bullet}\right.$ requires 270.1250).

26

30

4-[7-(3,4-Methylenedioxyphenyl)bicyclo[4.2.0]oct-4-en-8-ylidene]butanoic acid (30). To a stirred slurry of (3-carboxypropyl)-triphenylphosphonium bromide $9(0.77 \mathrm{~g}, 1.8 \mathrm{mmol})$ in dry THF (7.0 mL) at $-75^{\circ} \mathrm{C}$ was added potassium tert-butoxide $(0.35 \mathrm{~g}, 3.1 \mathrm{mmol})$. After 15 min at $-75^{\circ} \mathrm{C}$, a solution of cyclobutanone $26(0.21 \mathrm{~g}, 0.8 \mathrm{mmol})$ in dry THF (3.0 mL) was added to the mixture, which was further stirred at $-75^{\circ} \mathrm{C}$ for 10 min , and then at room temperature overnight. The mixture was poured into $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (20 mL), washed with ethyl acetate $(20 \mathrm{~mL})$, and then acidified with conc. HCl . The aqueous layer was extracted with ether $(3 \times 20 \mathrm{~mL})$ and the combined extract was concentrated to 20 mL , then kept at $-20^{\circ} \mathrm{C}$ for 2 hrs . The resulting precipitate was filtered off and discarded. Evaporation the filtrate gave a yellowish oil (0.66 g) which was purified by column chromatography on silica gel, eluting with petroleum ether/ethyl acetate (7:3), to give the desired product 30 in Z / E isomer ratio of 2:1, as a yellowish oil ($0.26 \mathrm{~g}, 32 \%$).
$4-\left[\left(1 R^{*}, 6 S^{*}, 7 S^{*}\right)\right.$-7-(3,4-Methylenedioxyphenyl)
bicyclo[4.2.0]oct-4-en-8-ylidene]butanoic acid 30

Yellowish oil. $R_{\mathrm{f}} \approx 0.30$ [UV-active, $\mathrm{EtOAc} /$ Pet. ether 60%, anisaldehyde (blue spot)]. IR (neat): $v_{\text {max }}$ 2928 (s), 2863 (m), 1738 (s, C=O), 1504 (m), 1490 (m), 1441 (m), 1246 (s), 1188 (m), 1040 (m, O-$\mathrm{CH}_{2}-\mathrm{O}$), $927\left(\mathrm{~m}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 859(\mathrm{w}), 810(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}\right) 1.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2 \mathrm{a}), 1.86-1.97$ (3H, m, H2b, H3), $2.20-2.36(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 18, \mathrm{H} 19), 2.53(2 \mathrm{H}, \mathrm{dd}, J=6.0,4.4 \mathrm{~Hz}, \mathrm{H} 9), 2.79(1 \mathrm{H}, \mathrm{m}$, H6), 3.22 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1, \mathrm{H} 7$), $4.97(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H} 17), 5.57$ (1H, m, H5), 5.84 (2H, s, H16), 5.92 $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 6.54(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, \mathrm{H} 11), 6.60(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H} 15), 6.63(1 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}, \mathrm{H} 12) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) 21.9 (C3), 23.1 (C2), 23.7 (C18), 33.6 (C6), 34.2 (C19), 34.9 (C9), 39.2 (C7), 46.6 (C1), 100.7 (16), 108.0 (C12), 109 (C15), 118.0 (C17), 121.2 (C11), 126.8 (C5), 129.9 (C4), 135.0 (C10), 145.4 (C13), 146.6 (C8), 147.4 (C14), 179.0 (C20). MS m/z (EI) 106, 132, 135, 136, 137, 148, 149, 174, 185, 239, 272, 274, 298, $326\left(\mathrm{M}^{+\bullet}\right)$. HRMS m/z (EI): $326.1515\left(\mathrm{M}^{+}\right.$ $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}^{+\cdot}$ requires 326.1513).

Methyl 4-[7-(3,4-methylenedioxyphenyl)bicyclo[4.2.0]octan-8-yl]butanoate (31). To a solution of the bicycloalkene $30(55 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(10 \% \mathrm{w} / \mathrm{w}, 5.5$ mg), and the resulting mixture was hydrogenated at 1 atm for 12 hrs . Filtration through Celite and evaporation of the filtrate in vacuo afforded pure $\mathbf{3 1}(d r 3: 1)$ as yellowish oil ($47 \mathrm{mg}, 80 \%$).
Methyl 4-[(1 $\left.R^{*}, 6 S^{*}, 7 S^{*}\right)$-7-(3,4-methylenedioxyphenyl)bicyclo
[4.2.0]octan-8-yl]butanoate 31

Yellowish oil. $R_{\mathrm{f}} \approx 0.35$ [UV-active, EtOAc/Pet. ether 60%, anisaldehyde (blue spot)]. IR (neat): $v_{\max }$ 2929 (s), 2863 (m), 1739 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1504 (s), 1490 (s), 1442 (m), 1246 (s$), 1188$ (m), 1122 9w), 1096 (w), 1040 (m, O-CH2-O), 927 (m, O-CH2-O), 861 (w), 811 (w) cm ${ }^{-1} . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}$) $1.14-1.23$ (4H, m, H3, H4), $1.39-1.59$ (H8, m, H2, H5, H17, H18), $2.15-2.24$ (3H, m, H8, H19), $2.30-2.40$ $(2 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 6), 2.62-2.74(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 7, \mathrm{H} 9), 3.58(3 \mathrm{H}, \mathrm{s}, \mathrm{H} 21), 5.82(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 16), 6.55(1 \mathrm{H}, \mathrm{dd}, J=$ 8.1, 1.7 Hz, H11), $6.60(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{H} 15), 6.62(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H} 12) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}$) 22.6 (C3), 22.7 (C4), 23.1 (C2), 23.2 (C5), 24.8 (C18), 27.6 (C17), 32.9 (C9), 33.8 (C6), 34.1 (C8), 34.4 (C19), 40.2 (C1), 40.3 (C7), 51.6 (C21), 100.6 (C16), 108.1 (C12), 108.9 (C15), 121.2 (C11), 136.2 (C10), 145.2 (C13), 147.4 (C14), 174.3 (C20). MS m/z (EI) 102, 145, 158, 167, 194, 214, 239, $279,295,313,325,331,344\left(\mathrm{M}^{+\bullet}\right), 362,380$. HRMS $\boldsymbol{m} / \boldsymbol{z}$ (EI): $344.1992\left(\mathrm{M}^{+\bullet} \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}{ }^{+\bullet}\right.$ requires 344.1982).

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 6 .

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound $\mathbf{6}$.

Figure S3: IR spectrum. of compound 6 .

Figure S4: MS spectrum (positive $\mathrm{CI}, \mathrm{NH}_{3}$). of compound $\mathbf{6}$.

Figure S5: HRMS spectrum (EI) of compound 6.

Figure S6: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 7.

Figure S7: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 7 .

Figure S8: IR spectrum of compound 7.

Figure S9: MS spectrum (positive $\mathrm{CI}, \mathrm{NH}_{3}$) of compound 7.

Figure S10: HRMS spectrum (EI) of compound 7.

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 8 .

Figure S12: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 8 .

Figure S13: IR spectrum of compound 8.

Figure S14: MS spectrum (positive $\mathrm{CI}, \mathrm{NH}_{3}$) of compound 8 .

Figure S15: HRMS spectrum (EI) of compound $\mathbf{8}$.

Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{1 0}$.

Figure S17: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound $\mathbf{1 0}$.

Figure S18:MS spectrum (EI) of compound 10.
© 2024 ACG Publications. All rights reserved.

Figure S19: HRMS spectrum (EI) of compound $\mathbf{1 0}$.

Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 11 .

Figure S21: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 11.

Figure S22: HRMS spectrum (EI) of compound 11.

Figure S23: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 13 .

Figure S24: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 13.

Figure S25: MS spectrum (positive $\mathrm{CI}, \mathrm{NH}_{3}$) of compound 13 .

Figure S26:HRMS spectrum (EI) of compound 13.

Figure S27: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 19.

Figure S28: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 19.

Figure S29: IR spectrum of compound 19.

Figure S30: HRMS spectrum (EI) of compound 19.

Figure S31: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 20.

Figure S32: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 20.

Figure S33: IR spectrum of compound 20.

Figure S34: MS spectrum (positive $\mathrm{CI}, \mathrm{NH}_{3}$) of compound 20.

Figure S35: HRMS spectrum (EI) of compound 20.

Figure S36: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 21.

Figure S37: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 21.

Figure S38: IR spectrum of compound 21.
© 2024 ACG Publications. All rights reserved.

Figure S39:MS spectrum (positive $\mathrm{CI}, \mathrm{NH}_{3}$) of compound 21.

Figure S40: HRMS spectrum (EI) of compound 21.

Figure S41: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{2 5}$.

Figure S42: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 25.

Figure S43: IR spectrum of compound 25.

Figure S44: HRMS spectrum (EI) of compound 25.

Figure S45: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 26.

Figure S46: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 26.

Figure S47: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 29 .

Figure S48: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound 29.

Figure S49: IR spectrum of compound 29.

Figure S50: HRMS spectrum (EI) of compound 29.

Figure S51: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound $\mathbf{3 0}$.

Figure S52: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound $\mathbf{3 0}$.

Figure S53: HRMS spectrum (EI) of compound $\mathbf{3 0}$.

Figure S54: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of compound 31 .

Figure S55: ${ }^{13} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ of compound $\mathbf{3 1}$.

Figure S56: IR spectrum of compound 31.

