Supporting Information

Rec. Nat. Prod. 8:3 (2014) 294-298

A Trimeric Proanthocyanidin from the Bark of Acacia

leucophloea Willd.

Sarfaraz Ahmed^{*1,4}, Hsiao-Ching Lin^{** 2}, Iram Nizam¹, Nadeem Ahmad Khan³, Shoei-Sheng Lee² and Nizam Uddin Khan¹

¹Department of Chemistry, Aligarh Muslim University, Aligarh-202 002, India ²School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10051, Taiwan, Republic of China ³GVK Biosciences, 28A, IDA, Nacharam, Hyderabad-500076, India ⁴Department of Pharmacognosy, College of Pharmacy, King Saud University, Post box-2457, Riyadh-11451, Saudi Arabia

Table of Contents	Page
Experimental	3-4
S1: ¹ H NMR (600 MHz, methanol- d_4) Spectrum of Compound 1	5
S2: ¹³ C NMR (600 MHz, methanol- d_4) Spectrum of Compound 1	6
S3: COSY (600 MHz, methanol- d_4) Spectrum of Compound 1	7
S4: HSQC (600 MHz, methanol- d_4) Spectrum of Compound 1	8
S5: HMBC (600 MHz, methanol- d_4) Spectrum of Compound 1	9
S6: Selected NOESY (600 MHz, methanol- d_4) spectrum	10
of Compound 1 at δ 2.42 (A), 2.94 (B), 2.37 (C), and 6.00 (D)	
S7: Selected TOCSY (600 MHz, methanol- d_4) spectrum	11
of Compound 1 at δ 4.36 (A), 4.70 (B), 3.70 (C), 4.51 (D), 4.65 (E), and 3.60 (F)	
S8: ¹ H NMR (600 MHz, chloroform- <i>d</i> ,) spectrum of Compound of 1c	12
S9: ¹ H NMR (600 MHz, DMSO- d_6) spectrum of Compound 1d	13

14

Experimental

Instrumental

The optical rotations were measured on a JASCO DIP-370 polarimeter. UV spectra were measured in MeOH on a Hitachi 150-20 Double Beam Spectrophotometer. The CD spectra were recorded on a J-720 spectropolarimeter. ¹H, ¹³C NMR, and 2D NMR spectra were obtained in methanol- d_4 (δ_H 3.30 and δ_C 49.0) and chloroform- d_3 (δ_H 7.24 and δ_C 77.0) on a Bruker Avance III 600 NMR spectrometer, equipped with a 5 mm cryoprobe using standard pulse programs. The ESI-MS data were obtained on an Esquire 2000 ion trap mass spectrometer (Bruker Daltonik, Bremen, Germany). The HR-ESI-MS data were measured on a micrOTOF orthogonal ESI-TOF mass spectrometer (Bruker, Daltonik, Bremen, Germany). TLC analyses were carried out on silica gel plates (KG60-F₂₅₄, Merck). Semi-preparative HPLC was performed on a Phenomenex® RP-18 column (Prodigy ODS-3, 250 × 10 mm, 5 µm). The microplate spectrophotometer for bioassay was SPECTRAmax® PLUS (Molecular Devices, U.S.A).

Chemicals and reagents

CH₃CN (HPLC grade) and MeOH were purchased from Mallinckrodt Baker Inc. (Phillipsburg, NJ, USA) and deionized water was prepared from a Barnstead water purification system (Dubuque, IA, USA). Chloroform- d_3 (99.8%) was purchased from Cambridge Isotope Lab. Inc. (Andover, MA, USA). Methanol- d_4 (99.8%) was purchased from Merck KGaA (Darmstadt, Germany). α -Glucosidase type IV from *Bacillus stearothermophilus*, *p*-nitrophenyl α -D-glucopyranoside, K₂HPO₄ and KH₂PO₄ were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA).

Extraction and Isolation

The EtOH extract (174.5 g) of the dry bark of *A. leucophloea* (1.64 Kg) was triturated with solvents in sequence (500mL ×3) to give fractions soluble in CHCl₃, EtOAc, acetone and EtOH. The EtOAc fraction (50 g out of 55 g) was subjected to silica gel column eluted by different solvent systems in increasing order of polarity. EtOAc eluent of column to give fraction AL-1. AL-1 (1.01 g) was dissolved in 25% MeOH–H₂O (10 ml) and the soluble part (623.5 mg) was separated on a Lobar RP-18 column (LiChroprep RP-18, size B, 310×25 mm; 40-63 µm, Merck), delivered by a stepwise gradient of MeOH–H₂O from 15:85 to 75:25, to give six subfractions. Part of subfr. 3 (fr.AL-1-3) (31.7 mg out of 114.4 mg) was separated on a semi-preparative HPLC column, 3.17 mg (0.1 ml MeOH) × 10, delivered by MeCN–H₂O (18:82) with a flow rate of 2.5 mL/min and detection at 300 nm. The fraction (6.9 mg) containing the major peak ($t_R = 52.1$ min) was further purified on a Sephadex LH-20 column (75 × 1.5 cm, MeOH) to give **1** (1.8 mg). The 25% MeOH_{aq} insoluble fraction (387 mg) of AL-1 was chromatographed on a Sephadex LH-20 column (72 × 2.5 cm, MeOH–H₂O 7:3) to give **1** (17.9 mg).

O-Methylation and Acetylation of compound 1

To the solution of compound 1 (3.0 mg) in acetone (1 mL) was added dimethyl sulfate (200 μ L), K₂CO₃ (50 mg) and Cs₂CO₃ (20 mg). The mixture was refluxed (65 °C) under N₂ for 4 hours and the reaction mixture was evaporated to give a residue which was partitioned between H₂O (10 mL) and CHCl₃ (10 mL × 3). The CHCl₃ extract was purified on a silica gel column (10–55% acetone–hexane) to give 1c (0.4 mg). The solution of 1c in acetic anhydride (200 μ L) and anhydrous pyridine (100 μ L) was stirred for 4 h at room temperature. After quenching with EtOH (200 μ L) for 0.5 h, the reaction mixture was evaporated to dryness and the residue was further purified by a Sephadex LH-20 column (7:3, MeOH–CHCl₃) to give 1d (0.4 mg).

(-)-Fisetinidol- $(4\alpha, 8)$ -[(-)-fisetinidol- $(4\alpha, 6)$]-(+)-catechin (1)

White amorphous powder; $[\alpha]^{27}$, D + 83.8 (c 0.50, MeOH); UV (MeOH) λ max (log ϵ): 281.5 (4.29); CD (MeOH) $\Delta\epsilon$ 215 - 49.32; ¹H and ¹³C NMR, see Table 1; HMBC, see Figure 2; (+)ESIMS m/z (rel int %) 857.2 (100, [M+Na]⁺); (+) HRESIMS m/z 857.2037 [M+Na]+, calcd for C₄₅H₃₈NaO₁₆, 857.2058.

(2R,3S)-2,3-*trans*-3-Hydroxy-6,8-bi-[(2R,3S,4S)-2,3-*trans*-3,4-*trans*-3-hydroxy-3',4',7 -trimethoxyflavan-4-yl]-3',4',5,7-tetramethoxyflavan (1c)

White amorphous powder; CD (MeOH) $\Delta \epsilon 223$ –CE, $\Delta \epsilon 235$ –CE; ¹H NMR (CDCl₃, 600 MHz) δ 3.99, 3.94, 3.90, 3.86, 3.86, 3.85, 3.73, 3.73, 3.72, 3.59 (s, OCH₃); (+) ESIMS m/z (rel int %) 997.4 (100, [M+Na]⁺).

(2R,3S)-2,3-*trans*-3-acetoxy-6,8-bi-[(2R,3S,4S)-2,3-*trans*-3,4-*trans*-3-acetoxy-3',4',7-t rimethoxyflavan-4-yl]-3',4',5,7-tetramethoxyflavan (1d)

White amorphous powder; CD (MeOH) $\Delta \varepsilon 223 - CE$, $\Delta \varepsilon 234 - CE$; ¹H NMR (DMSO- d_6 , 600 MHz) δ 1.85, 1.82 (s, COCH₃), 1.71, 1.67 (s, 3H, COCH₃), 1.54, 1.44 (s, 3H, COCH₃); (+) ESIMS m/z (rel int %) 1123.4 (68, [M+Na]⁺), 1139.4 (100, [M+K]⁺).

Assay for α-Glucosidase Activity

The inhibitory activities against α -glucosidase type IV from *Bacillus stearothermophilus* were performed following the reported method [1]. Compound **1** was dissolved in 10% MeOH. Acarbose (Bayer) was chosen as the positive control with the IC₅₀ value against the same enzyme of 0.049 μ M.

S3: COSY (600 MHz, methanol- d_4) Spectrum of Compound **1**

S4: HSQC (600 MHz, methanol- d_4) Spectrum of Compound **1**

S5: HMBC (600 MHz, methanol- d_4) Spectrum of Compound **1**

S7: Selected TOCSY (600 MHz, methanol- d_4) Spectrum of Compound **1** at δ 4.36 (A), 4.70 (B), 3.70 (C), 4.51 (D), 4.65 (E), and 3.60 (F)

S8: ¹H NMR (600 MHz, chloroform- d_3) Spectrum of Compound **1c**

S9: ¹H NMR (600 MHz, DMSO- d_6) Spectrum of Compound **1d**

Reference

 S. S. Lee, H. C. Lin and C. K. Chen (2008). Acylated flavonol monorhamnosides, α-glucosidase inhibitors, from *Machilus philippinensis*, *Phytochemistry*. 69, 2347–2353.