Supporting Information

Rec. Nat. Prod. 10:1 (2016) 83-92

Isolation, Identification and Cytotoxic Activity of Triterpenes and Flavonoids from Green Walnut (*Juglans regia* L.) Pericarps

Gerasimia Tsasi^a, Pinelopi Samara^b, Ourania Tsitsilonis^b, Guido Jürgenliemk^c and Helen Skaltsa^{a,*}

¹Department of Pharmacognosy, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou, 157 71, Athens, Greece

²Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece

³Department of Pharmaceutical Biology, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany

Table of Contents	Page
S1: ¹ H-NMR (400 MHz, CDCl ₃) Spectrum of Compound 2	2
S2: COSY (400 MHz) Spectrum of Compound 2	2
S3 : HSQC (400 MHz) Spectrum of Compound 2	3
S4: HMBC correlations, ESI MS of compound 2	3
S5: ¹ H-NMR (400 MHz, CDCl ₃) Spectrum of Compound 3	4
S6: COSY (400 MHz) Spectrum of Compound 3	4
S7: HSQC and HMBC (400 MHz) Spectra of Compound 3	5
S8: ¹³ C-NMR- ¹³ C-NMR/DEPT, ESI MS of compound 3	6
S9 : ¹ H- and ¹³ C-NMR spectroscopic data of compounds 1	7
S10: ¹ H-NMR (400 MHz, CDCl ₃) Spectrum of Compound 1	8
S11: ¹ H- and ¹³ C-NMR spectroscopic data of compounds 4	9
S12: ¹ H-NMR (400 MHz, CDCl ₃) Spectrum of Compound 4	10
S13: ¹ H-NMR (400 MHz, CD ₃ OD) Spectrum of Compound 10	11
S14: COSY (400 MHz) Spectrum of Compound 10	11
S15: HSQC and HMBC (400 MHz) Spectra of Compound 10	12

ESI MS of ${\bf 2}$

HSQC of 3

ESI MS of $\mathbf{3}$

Position	δ_{C}	δ_{H}	J (Hz)
1a	38.9	1.31	m
1b		1.00	m
2	27.2	1.63-1.54	m
3	78.8	3.19	dd (J =4.5, 10.0)
4		-	-
5	55.1	0.69	dd
6a, b	18.1	1.39-1.32	m
7a,b	33.1	1.46-1.33	m
8	39.5	-	-
9	47.5	1.48	m
10	38.2	-	-
11a,b	23.0	1.89	dd (J= 3.5, 9.0)
12	125.4	5.23	t (J= 3.5)
13	137.8	-	-
14	41.9	-	-
15	27.6	*	
16a	23.7	2.01-1.08	dd (J= 4.3, 12.9)
16b		2.02	brd (J= 4.3)
17	47.5	-	-
18	52.5	2.16	d (J=10.7)
19	38.8	1.30	m
20	39.2		
21a	32.8	1.45	m
21b	52.0	1.34	m
22	36.5	1.70	m
23	28.1	0.96	S
24	15.3	0.74	S
25	15.4	0.90	S
26	16.8	0.76	S
27	23.5	1.05	S
28	180.4	-	-
29	16.8	0.83	d (J= 6.4)
30	21.3	0.91	d (J= 6.4)

 Table 3: ¹H- and ¹³C-NMR spectroscopic data of compounds 1 (ursolic acid) in CDCl₃.

* Overlapped signal

¹H NMR of **1**

Position	$\delta_{ m C}$	$\delta_{ m H}$	J (Hz)
1	38.4	1.55-1.63	m
2a	27.1	1.58	m
2b	27.1	*	
3	78.5	3.21	dd (J= 10.2, 4.8)
4	38.3	-	-
5	55.3	0.70	brs
6a	18.8	1.52	m
6b		1.37	m
7a	32.6	1.18	m
7b	32.0	1.44	m
8	39.3	-	-
9	47.7	1.54	m
10	36.8	-	-
11	23.1	1.85	m
12	122.7	5.25	t (J=3.5)
13	143.6	-	-
14	41.3	-	-
15	28	1.56	m
16a	22.3	1.90	*
16b	22.5	1.82	*
17	45.8	-	-
18	40.6	2.79	dd (J=4.3, 13.7)
19a	16 1	1.60	m
19b	40.4	1.15	
20	30.6	-	-
21	33.8	1.65-1.48	m
22a	32.5	1.73	m
22b	52.5	1.29	m
23	27.8	0.96	S
24	15.6	0.75	S
25	15.3	0.89	S
26	17.1	0.72	S
27	25.8	1.11	S
28	183.4	-	-
29	32.9	0.88	8
30	23.9	0.90	S

 Table 4: ¹H- and ¹³C-NMR spectroscopic data of compounds 4 (oleanolic acid) in CDCl₃.

*Overlapped signal

¹H NMR of **4**

COSY of 10

