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Abstract:  Two known triterpenoids, friedelin and aglaitriol, and a new dammarane triterpenoid, aglaitriol 3-

caffeate, have been isolated and identified in the chloroform bark extract of Drypetes acuminata P.I. Forst. 

(Putranjivaceae) from Paluma, north Queensland, Australia.  The compounds were screened for antimicrobial 

and cytotoxic activity.  Aglaitriol showed potent cytotoxic activity against three human tumor cell lines (MCF-7, 

MDA-MB-231, and 5637).  Aglaitriol 3-caffeate showed moderate antibacterial activity against Staphylococcus 

aureus and Escherichia coli.  A molecular docking analysis suggests topoisomerase II may be a likely protein 

target for aglaitriol. 

 

Keywords: Drypetes acuminata; dammarane; aglaitriol; aglaitriol 3-caffeate; cytotoxicity; antibacterial; 

molecular docking. © 2016 ACG Publications. All rights reserved. 

 

1. Introduction 

Drypetes acuminata P.I. Forst., previously known as Drypetes lasiogyna var. australasica (Müll. 

Arg.) Airy Shaw, is commonly known as yellow tulipwood or grey boxwood, although other names 

have been used [1].  The tree was formerly placed in Euphorbiaceae, but now is in the Putranjivaceae 

[2].  It is endemic to north east Queensland, Australia, where it is usually found in rainforest on granite 

substrate at altitudes between 600 and 1000 m.  Members of the Drypetes genus are extensively used 

in African folk medicine to treat various diseases such as bronchitis, ailments of the digestive tract, 

fever, kidney pain and rheumatism [3,4]  Members of this genus have shown anti-inflammatory, 

analgesic [5,6], antimicrobial [7-9], and cytotoxic [10,11] activities.  Previous investigations of D. 

acuminata (syn. D. lasiogyna) from north Queensland, Australia, have shown the bark extracts to be 

antibacterial (Staphylococcus aureus and Streptococcus pneumoniae) and cytotoxic to human tumor 

cells (Hep-G2, MDA-MB-231, 5637) [12].  In this work, we present the isolation and characterization 

of biologically active dammarane triterpenoids from the chloroform bark extract of D. acuminata.  To 

our knowledge, there have been no previous phytochemical studies of this tree. 

 

2. Materials and Methods 

 

2.1. General  

 
NMR measurements (

1
H, 

13
C, HSQC, HMBC, COSY) were carried out on a Varian INOVA 500 

MHz NMR spectrometer.  IR measurements were obtained on a Perkin-Elmer Spectrum One FT-IR 
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spectrophotometer.  HRMS/ESI were measured with a Bruker microOTO-Q II spectromer.  Silica gel 

and TLC plates were obtained from Sorbtech Technologies (Norcross, Georgia, USA).  HPLC grade 

chromatography solvents were obtained from Fisher Scientific (Waltham, Massachusetts, USA).  

Deuterochloroform was obtained from Sigma-Aldrich (St. Louis, Missouri, USA). 

 

2.2. Plant Material 

 
 The bark of D. acuminata was collected on 31 July 1996 from the Paluma rainforest (Mt. Spec 

State Forest) of north Queensland, Australia (18º57' S, 146º11' E; elevation 900 m; 84 km north of 

Townsville) under permit issued to Dr. Betsy Jackes [12].  The plant was identified by Betsy Jackes 

and a voucher specimen is currently lodged at the James Cook Herbarium (JCT).  The bark (1200 g) 

was chopped and extracted using a Soxhlet extractor and refluxing chloroform for 4 h.  The 

chloroform was evaporated to give 68.6 g crude extract. 

 

2.3. Chromatographic Separation 

 
 The crude bark extract (25.0 g) was su  e ted to  ioa ti it -dire ted  olu n  hro ato ra h  

usin  sili a  el (40-6      arti le si e and 60    orosit ) as the stationary phase in a column of 

len th 90    (len th) × 5    (dia eter).  The elution was  arried out usin  di hloro ethane 

(DCM)/ethyl acetate (EtOAc) step gradient (Figure 1).  The fractions (200-mL) were analyzed by thin-

layer chromatography (TLC) and fractions with similar TLC profiles were combined. 

Fractions F5-F7 (616.6 mg) were combined and purified by recrystallization from toluene to give 

426.5 mg friedelin as a colorless crystalline solid.  
1
H NMR (CDCl3, 500 MHz), δ 2. 9 (dd, 1H), 2.35-

2.22 (m, 2H), 1.97 (m, 1H), 1.77 (m, 1H), 1.58 (m, 1H), 1.57-1.54 (m, 2H), 1.53-1.43 (m, 5H), 1.42-

1.34 (m, 7H), 1.31-1.21 (m, 4H), 1.19 (s, 3H), 1.06 (s, 3H), 1.02 (s, 3H), 1.01 (s, 3H), 0.96 (s, 3H), 

0.89 (d, 3H) 0.88 (s, 3H) 0.73 (s, 3H).  
13

C NMR (CDCl3, 125 MH ), δ 21 .61, 77.16, 59.88, 58.6 , 

53.51, 43.20, 42.55, 41.94, 41.70, 40.10, 39.66, 38.70, 37.85, 36.42, 36.03, 35.75, 35.43, 33.18, 32.83, 

32.50, 32.19, 30.91, 30.40, 28.58, 22.69, 20.67, 19.07, 18.64, 18.35, 15.07, 7.23.  IR (KBr), 3380 

(νO-H), 2929, 2868, 2 51, 171  (νC=O), 1459, 1385, 1187, 1112, 784, 668 cm
-1

. 

Fractions F59-F65 (941.5 mg) were combined and subjected to column chromatography (silica 

gel, 24 cm L  2 cm D, eluting with 95:5 DCM/MeOH step gradient, 20-mL fractions).  Subfractions 

f15-f17 were  o  ined and re r stalli ed fro  EtOA / entane to  i e  25.1    5α-dammar-20-ene-

 β,24,25-triol (aglaitriol) as a colorless crystalline solid.  
1
H NMR (CDCl3, 500 MH ), δ 4.78 (s, 1H), 

4.73 (d, J = 1.35 Hz, 1H), 3.41 (d, J = 10.05 Hz, 1H), 3.19 (dd, J = 4.9, 11.55 Hz, 1H), 2.28-2.16 (m, 

2H), 2.08-2.01 (m, 1H), 1.89 (s, 1H), 1.72-1.57 (m, 10H), 1.49-1.40 (m, 3H), 1.33-1.25 (m, 3H), 1.22 

(s, 3H), 1.17 (s, 3H), 1.15-0.99 (m, 3H), 0.98 (s, 6H), 0.87 (s, 3H), 0.85 (s, 3H), 0.78 (s, 3H), 0.74 (dd, 

J = 2.15, 11.55, 1H).  
13

C NMR (CDCl3, 125 MHz), δ 15.79, 16.07, 16. 4, 16.66, 18.70, 21.75, 2 .67, 

25.39, 26.97, 27.83, 28.43, 29.64, 30.50, 31.80, 31.95, 35.83, 37.63, 39.39, 39.51, 40.88, 46.05, 48.20, 

49.88, 51.32, 56.28, 73.55, 77.16, 78.78, 79.36, 108.12, 153.26.  IR (KBr), 3380 (νO-H), 2960, 2858, 

1634 , 1447, 1413, 1385, 1360, 1299, 1245, 1083, 1048, 986, 941, 886, 783, 710 cm
-1

.  HRMS/ESI, 

m/z:  obsd [M+Na]
+
 483.3821, calcd [M+Na]

+
 483.3814 for formula C30H52O3. 

Fractions F67-F69 (1.054 g) were combined and subjected to column chromatography (silica gel, 

24 cm L  2 cm D, eluting with 95:5 DCM/MeOH, 20-mL fractions).  Subfractions f15-f17 were 

combined and recrystallized from EtOAc/pentane to give 141.7 mg dammar-20-ene-24,25-diol- β-yl 

caffeate (aglaitriol 3-caffeate) as a colorless crystalline solid.  
1
H NMR (CDCl3, 500 MH ), δ 7.55 (d, 

J = 15.9 Hz, 1H), 7.09 (d, J = 1.9 Hz 1H), 7.00 (dd, J = 1.85, 8.30 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 

6.28 (d J = 15.9 Hz, 1H), 4.79 (s, 1H), 4.73 (d, J = 1.05 Hz, 1H) 4.62 (dd, J = 5.57, 10.57 Hz, 1H), 

3.41 (dd, J = 1.72, 10.47 Hz, 1H), 2.18- 2.29 (m., 1H), 1.99- 2.08 (m,1H), 1.91- 1.96 (m, 1H), 1.74 – 

1.48 (m, 11H), 1.45 – 1.28 (m, 5H), 1.24 (s, 3H), 1.19 (s, 3H), 1.16 – 1.06 (m, 3H), 0.98 (s, 3H), 0.93 

(s, 3H), 0.89 (s, 6H), 0.88 (s, 3H), 0.87 (m, 1H). 
13

C NMR (CDCl3, 125 MHz), δ 15.57, 15.8 , 16.21, 

16.59, 18.09, 21.27, 23.14, 23.74, 24.85, 26.45, 27.96, 29.11, 29.96, 31.30, 31.38, 35.25, 37.06, 38.06, 

38.69, 40.40, 45.54, 47.69, 49.38, 50.72, 55.89, 73.19, 77.16, 78.33, 80.93, 107.68, 114.23, 115.36, 
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116.32, 122.23, 127.63, 143.70, 144.21, 146.03, 152.69, 167.33. HRMS/ESI, m/z:  obsd [M+Na]
+
 

645.4069, calcd [M+Na]
+
 645.4126 for formula C39H58O6. 

 

2.4. Antimicrobial Screening 

 
 The compounds were screened for antimicrobial activity against Gram-positive bacteria Bacillus 

cereus (ATCC No. 14579) and Staphylococcus aureus (ATCC No. 29213), and Gram-negative 

bacterium Escherichia coli (ATCC No. 10798).  The minimum inhibitory concentrations (MIC) of the 

compounds against these microbes were determined by the microbroth dilution technique [12].  

Solutions (50  L of 1% w/  solutions of the sa  les in DMSO) were  ut into the to  lane of 96 well 

 lates and 50  L of  ation-adjusted Mueller Hinton broth (CAMHB) was added.  The sample solutions 

were then serially diluted (1:1) by transferrin  50  L of sa  le CAMHB  ixture to the next lane and 

addin  50  L fresh CAMHB to o tain  on entration fro  2500   / L to 12.5   / L.  The  i ro es 

were added to each well at a concentration of approximately 1.5  10
8
 colony forming units 

(CFU)/mL.  The plates were in u ated at  7ºC for 24 hours and the final MIC was deter ined as the 

lowest concentration without any turbidity.  Gentamicin was used as positive antimicrobial control and 

DMSO was used as negative control.  Antifungal activity of the samples against Candida albicans 

(ATCC No. 90028) was determined as described above, in yeast-nitrogen base growth medium with 

final concentration of approximately 7.5  10
7
 CFU/mL.  Antifungal activity against Aspergillus niger 

(ATCC No. 16888) was determined similarly using potato dextrose broth inoculated with A. niger 

hyphal culture diluted to a McFarland turbidity of 1.  Amphotericin B was used as positive control and 

DMSO was used as negative control for antifungal screening. 

 

2.5. Cytotoxicity Screening 

 
 The compounds were screened for cytotoxic activity against MCF-7 human breast 

adenocarcinoma cells (ATCC No. HTB-22), MDA-MB-231 human breast adenocarcinoma cells 

(ATCC No. HTB-26), and 5637 human urinary bladder carcinoma cells (ATCC No. HTB-9) using a 

96-well-based cytotoxicity assay [12].  MCF-7 and MDA-MB-231 cells were grown in RPMI 1640 

supplemented with 10% Fetal bovine serum (FBS), 30mM HEPES, NaHCO3, and penicillin-

streptomycin.  The 5637 cells were grown in RPMI 1640 supplemented with 10% FBS, 1mM sodium 

pyruvate, 2.5 g/L glucose, 30mM HEPES, NaHCO3, and penicillin-streptomycin.  Cells were plated 

into 96-well  ell  ulture  lates at  on entration of 2.5 ×10
4
 cells/well.  The volume in each well was 

100  L. After 48 hours, su ernatant fluid was re o ed    su tion and re la ed with 100  L  rowth 

 ediu   ontainin  1.0  L of DMSO solution of the sa  le (1% w/w in DMSO),  i in  a final 

 on entration of 100   / L for ea h well.  Solutions were added to wells in four replicates. Medium 

 ontrols and DMSO  ontrols (10  L DMSO/ L) were used.  Tin enone was used as a  ositi e  ontrol 

[13].  In order to establish percent kill rates, the MTT assay for cell viability was carried out [14].  

After colorimetric readings were recorded using SpectraMAX Plus microplate reader, at 570 nm, 

percent kill was calculated. 

 

2.6. Molecular Docking 

 
 Protein-ligand docking was carried out using Molegro Virtual Docker [15,16] based on the 

crystal structures of farnesyl protein transferase (PDB 1JCQ [17]), topoisomerase II (PDB 1QZR [18] 

and PDB 2RGR [19]), DNA polymerase β (PDB 2BPC [20] and PDB 3UXN [21]), and 5-

lipoxygenase (PDB 3V99 [22]).  Prior to docking all solvent molecules and the co-crystallized ligands 

were removed from the protein structures.  The ligand structures were  uilt usin  S artan ‘14 for 

Windows [23].  For each ligand, a conformational search and geometry optimization was carried out 

using the MMFF force field [24].  Molecular docking calculations for each protein were carried out 

with a sphere large enough to accommodate the substrate binding cavity (15   radius) to allow ea h 

ligand to search for possible docking conformations.  Standard protonation states based on neutral pH 

were used throughout.  Charges were assigned on each protein based on templates included in the 
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library files of Molegro Virtual Docker.  Flexible ligand models were used in the docking and 

subsequent optimization.  Variable orientations of each ligand were searched and ranked based on 

their re-rank score.  For each docking simulation the maximum number of iterations for the docking 

algorithm was set to 1500, with a maximum population size of 50, and 30 runs per ligand.  The RMSD 

threshold for  ulti le  oses was set to 1.00  .  The  enerated  oses fro  ea h li and were sorted    

the calculated re-rank score. 

 

3.  Results and Discussion  

 
Bioactivity-directed chromatographic separation of the crude chloroform bark extract of Drypetes 

acuminata (Figure 1) led to the isolation of friedelin (1.71%  ield), a laitriol (5α-dammar-20-ene-

 β,24,25-triol) (1.30% yield), and aglaitriol 3-caffeate (dammar-20-ene-24,25-diol- β-yl caffeate) 

(0.57% yield) (Figure 2).  The structure of friedelin was readily determined by comparison of its 
1
H 

and 
13

C NMR and IR spectra with those reported in the literature [25-27].  The structure of aglaitriol 

was also confirmed by comparison of NMR and IR spectra with those previously reported [28].  The 

structure of aglaitriol 3-caffeate, reported for the first time, was elucidated by comparison of its 
1
H and 

13
C NMR spectra with agalitriol [28] and caffeic acid [29] (Table 1).  Both 

1
H and 

13
C chemical shifts 

for aglaitriol and aglaitriol 3-caffeate were virtually identical.  Comparison of the remaining NMR 

data with the NMR data for caffeic acid confirmed the identification of the caffeate ester.  HMBC 

(Fig. 2) and COSY correlations confirmed the connectivity in the aglaitriol skeleton, and HMBC 

correlation between H-C(3) and C(1')=O confirmed the location of the ester linkage.  There are two 

possible epimers of aglaitriol and aglaitriol caffeate, (24R) and (24S).  We were not able to discern 

which epimer was isolated in D. acuminata, however. 

 

Column chromatography
SiO2 (90 cm x 5 cm)

CH2Cl2/EtOAc

Drypetes acuminata
CHCl3 bark extract

9:1 4:1 7:3 1:1
100%
EtOAc

F1-F29 F30-F39 F40-F58 F59-F76 F77-F81
 

                         
Figure 1. Preparative chromatographic separation scheme for Drypetes acuminata bark extract. 
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Figure 2.  Numbering scheme (left) and key HMBC correlations (right) in aglaitriol 3-caffeate. 

 
 

Antimicrobial screening revealed that only aglaitriol 3-caffeate had antibacterial activity against 

S. aureus and E. coli (MIC =  1    / L, Ta le 2).  None of the triterpenoids showed antifungal 

activity.   
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Table 1. 
1
H and 

13
C NMR data for aglaitriol and aglaitriol 3-caffeate (in CDCl3, δ in ppm). 

 

a Caffeic acid NMR data (acetone-d6) from Jeong et al. [29]. 
b Location of caffeate ester confirmed by HMBC correlation between H-C(3) and C(1')=O. 

 

 

 

Position Aglaitriol Aglaitriol 3-caffeate 

 
δ 

13
C δ 

1
H δ 

13
C δ 

1
H 

1 39.51 1.00, 1.71 38.69 1.07, 1.72 

2 27.83 1.57, 1.62 23.74 1.57, 1.62 

3 79.36 3.19 (dd) 80.93 4.62 (dd)
b 

4 39.39 --- 38.06 --- 

5 56.28 0.74 (dd) 55.89 0.87 

6 18.70 1.45, 1.55 18.09 1.45, 1.55 

7 35.83 1.28, 1.58 35.25 1.28, 1.59 

8 40.88 --- 40.40 --- 

9 51.32 1.32 50.72 1.32 

10 37.63 --- 37.06 --- 

11 21.75 1.30, 1.57 21.27 1.34, 1.51 

12 25.39 1.08, 1.57 24.85 1.08, 1.57 

13 46.05 1.68 45.54 1.67 

14 49.88 --- 49.38 --- 

15 31.80 1.11, 1.62 31.30 1.11, 1.61 

16 29.64 1.41, 1.92 29.11 1.41, 1.92 

17 47.69 2.20 47.69 2.20 

18 16.07 0.98 (s) 15.83 0.98 (s) 

19 16.66 0.85 (s) 16.21 0.89 (s) 

20 153.26 --- 152.69 --- 

21 108.12 4.73 (d), 4.78 (s) 107.68 4.73 (d), 4.79 (s) 

22 31.95 2.05, 2.28 31.38 2.05, 2.26 

23 30.50 1.48, 1.68 29.96 1.48, 1.66 

24 78.78 3.41 (d) 78.33 3.41 (d) 

25 73.55 --- 73.19 --- 

26 26.97 1.22 (s) 26.45 1.24 (s) 

27 23.67 1.17 (s) 23.14 1.19 (s) 

28 28.43 0.98 (s) 27.96 0.89 (s) 

29 15.79 0.78 (s) 16.59 0.93 (s) 

30 16.34 0.87 (s) 15.57 0.88 (s) 

1' 171.63
a 

--- 167.33
b 

--- 

2' 117.04 6.24 (d) 116.32 6.28 (d) 

3' 147.57 7.55 (d) 144.21 7.55 (d) 

1" 128.29 --- 127.63 --- 

2" 115.68 7.07 (d) 114.21 7.09 (d) 

3" 147.16 --- 143.70 --- 

4" 149.83 --- 146.03 --- 

5" 115.98 6.81 (d) 115.36 6.88 (d) 

6" 123.38 6.96 (dd) 122.23 7.00 (dd) 
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Table 2. Antimicrobial activity of D. acuminata CHCl3 crude bark extract and isolated triterpenoids.  

 

nt = not tested. 

 
The triterpenoids were screened for cytotoxic activity against three human tumor cell lines, MCF-

7 human breast adenocarcinoma, MDA-MB-231 human breast adenocarcinoma, and 5637 human 

urinary bladder carcinoma (Table 3).  Aglaitriol showed remarkable cytotoxic activity against all three 

tumor cell lines.  Neither friedelin nor aglaitriol caffeate were active in these assays, however.  The 

mechanisms of activity of cytotoxic triterpenoids  have been investigated [30] and several biochemical 

targets have been implicated, including farnes l  rotein transferase [ 1], DNA  ol  erase β [ 2], 

lipoxygenase [33], and topoisomerase II [34,35]. 

 

Table 3. Cytotoxic activity of D. acuminata CHCl3 crude bark extract and isolated triterpenoids.  

 

nt = not tested. 

 
A molecular docking analysis has been carried out in order to provide some insight into the 

possible mechanism of cytotoxic activity of aglaitriol.  Both (24R) and (24S) epimers of aglaitriol were 

examined in the docking analysis.  Ursolic acid, which is known to be an inhibitor of DNA 

 ol  erase β, li ox  enase, and to oiso erase II [30], was included in the docking analysis for 

comparison (Table 4).  Both epimers of aglaitriol docked to the protein targets better (more 

exothermic) than the virtual positive control, ursolic acid.  The protein-ligand interaction with the most 

exothermic docking energy was the DNA binding site of topoisomerase II, suggesting that this may be 

an important target in the cytotoxic activity of aglaitriol. 
 

Table 4. MolDock rerank docking scores for aglaitriol with protein targets. 
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