

Rec. Nat. Prod. 11:1 (2017) 74-76

records of natural products

# A New Sugar Ester from the Roots of *Acanthus ilicifolius* Na Lin<sup>1, 2</sup>, Bo Yi<sup>1</sup>, Juan Li<sup>2</sup>, Wanke Zhang<sup>2\*</sup> and Xiaopo Zhang<sup>2\*</sup>

<sup>1</sup>Department of Pharmacy, The General Hospital of People's Liberation Army (187 hospital),

Haikou 571159, China

<sup>2</sup>School of Pharmaceutical Sciences, Hainan Medicinal University, Haikou, 571199 China

(Received April 09, 2016; Revised June 05, 2016; Accepted June 11, 2016)

**Abstract:** A new compound, 1,2-di-(syringoyl)- $\beta$ -D-glucopyranose, together with erigeside C, were isolated from the roots of *Acanthus ilicifolius*. The structure of the new compound was elucidated by extensive spectroscopic methods, including 1D, 2D NMR and HRESIMS spectroscopic data. The cytotoxic activities of these compounds were evaluated against HepG2, A-549, and HeLa cells *in vitro*. However, none of them showed cytotoxic activities.

**Keywords**: *Acanthus ilicifolius*; 1,2-di-(syringoyl)- $\beta$ -D-glucopyranose; cytotoxic activities. @ 2016 ACG Publications. All rights reserved.

#### **1. Plant Source**

In the ongoing search of phytochemical studies of mangrove plants distributed in Hainan Island, China, the chemical constituents of the roots of *Acanthus ilicifolius* were investigated. Herein, we report on the structural elucidation of a new syringate glucoside of 1,2-di-(syringoyl)- $\beta$ -Dglucopyranose (1) (Figure 1).

The roots of *A. ilicifolius* were collected from Wenchang County, Hainan Province of People's Republic of China in July 2014. The sample was identified by Prof. Niankai Zeng and a voucher specimen (No. A1201407) has been deposited in the Herbarium of School of Pharmaceutical Science, Hainan Medical University.

## 2. Previous Studies

A. *ilicifolius* is a spiny herb distributed in the coastal line of subtropical and tropical region in the world. This plant has been used as folk medicine to cure tumor and hepatitis [1]. Alkaloids, lignans and flavonoids with various effects, cytotoxic, anti-inflammatory, have been isolated from *A. ilicifolius* [2]. Previously, we reported four new 2-benzoxazolinone-type alkaloids with cytotoxic activities from this plant [3]. As a continuous work, a new sugar ester is obtained and structurally characterized in present study.

## 3. Present Study

The dried roots of *A. ilicifolius* (2.0 kg) were cut into pieces and extracted with 95% EtOH ( $3 \times 8.0$  L) at 70°C for 2 h x 2 times. The ethanol extract was concentrated under reduced pressure at room temperature. After evaporation of the solvent, the residue was suspended in water and extracted with

<sup>&</sup>lt;sup>\*</sup> Corresponding author: E- Mail: <u>627169931@qq.com</u> (Wanke Zhang), Phone +86-898-3751, <u>z\_xp1412@163.com</u>, Tel: 86+898-31350718.

The article was published by Academy of Chemistry of Globe Publications www.acgpubs.org/RNP © Published 09/21/2016 EISSN: 1307-6167

petroleum ether, and n-BuOH, successively. The *n*-BuOH part (20 g) was subject to silica gel column chromatography (200-300 mesh), using chloroform-acetone gradient elution (9:1, 4:1, 2:1) to afford six fractions (Fr. A-F). Fr. C (2.1 g) was fractioned by Sephadex LH-20 using MeOH as eluent, to give six fractions (subfracs.1-6). Subfracs. 2 was further purified by semi-preparative HPLC (45% MeOH in H<sub>2</sub>O, 2.0 mL/min) to afford **1** (tR 17.6 min, 4.5 mg). Subfracs. 4 was further purified by semi-preparative HPLC (40% MeOH in H<sub>2</sub>O, 2.0 mL/min) to afford **2** (tR 20.6 min, 6.5 mg).

*1,2-di-(syringoyl)-β-D-glucopyranose (1)*: White amorphous powder,  $[\alpha]_D^{25} = -22.6$  (c = 0.1, MeOH); UV (CHCl<sub>3</sub>):  $\lambda_{max}$  (log  $\varepsilon$ ): 336 (1.22), 287 (1.52), 250 (1.36); IR  $v_{max}$  (CHCl<sub>3</sub>): = 3450, 1742, 1640, 1608, 1516, 1071 cm<sup>-1</sup>; <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD)  $\delta$  (ppm)= 7.24 (2H, s, H-2', 6'), 7.22 (2H, s, H-2", H-6"), 5.89 (1H, d, J = 8.4 Hz, H-1), 5.20 (1H, dd, J = 10.8, 8.4 Hz, H-2), 3.89 (1H, dd, J = 12.0, 1.2 Hz, H-6a), 3.84 (1H, t, J = 8.4 Hz, H-3), 3.75 (1H, dd, J = 12.0, 4.8 Hz, H-6b), 3.56 (2H, m, H-4, 5), 3.82 (6H, s, 3', 5'-OMe), 3.80 (6H, s, 3", 5"-OMe); <sup>13</sup>C NMR (150 MHz, CD<sub>3</sub>OD):  $\delta$  (ppm) = 57.0 (-OCH<sub>3</sub>, 3', 5', 3", 5"-OMe), 94.8 (CH, C-1), 75.1 (CH, C-2), 79.4 (CH, C-5), 71.6 (CH, C-4), 75.8 (CH, C-3), 62.4 (CH<sub>2</sub>, C-6), 121.2 (C, C-1"), 108.6 (CH, C-2"), 149.1 (C, C-3"), 142.7 (C, C-4"), 149.1 (C, C-5"), 108.5 (CH, C-6"), 126.7 (C-7"), 166.5 (C-7"). HRESIMS: *m*/*z* 563.1368 ([M+Na]<sup>+</sup>, calcd. C<sub>24</sub>H<sub>28</sub>NaO<sub>14</sub> for 563.1377).

*Cytotoxicity bioassays*: The following human cancer cell lines were used: HepG2, A-549, and HeLa. The cytotoxicity assay was performed using the MTT method in 96-well microplates. Half maximal inhibitory ( $IC_{50}$ ) values were calculated by the previous method [6].

The air-dried and powdered roots of *A. ilicifolius* were extracted with 95% ethanol under reflux. Following, the ethanol extract was filtered and concentrated under reduced pressure to yield a crude extract, which was suspended in distilled water and then successively partitioned with petroleum ether, and n-BuOH. Phytochemical investigation on *n*-BuOH fraction has resulted in the isolation of 1,2-di-(syringoyl)- $\beta$ -D-glucopyranose as shown in Figure 1.

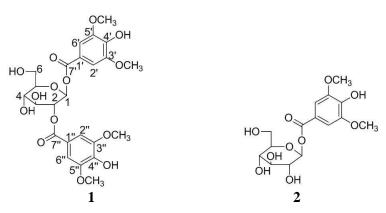
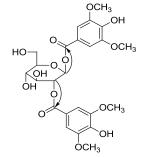




Figure 1. Structures of 1 and 2 isolated from A. ilicifolius.

Compound **1** was isolated as white amorphous powder, for which the UV spectrum showed absorption peaks at 336, 287, and 250 nm. Its molecular formula was determined as  $C_{24}H_{28}O_{14}$  by HRESIMS analysis at m/z 563.1368. The IR spectrum of **1** showed absorption bands for hydroxyl (3450 cm<sup>-1</sup>), carbonyl (1742 cm<sup>-1</sup>), and aromatic (1608, 1516 cm<sup>-1</sup>) moieties . The <sup>1</sup>H NMR spectrum of **1** showed four aromatic protons [ $\delta = 7.24$  (2H, s, H-2', 6'), 7.22 (2H, s, H-2", H-6")]. The <sup>1</sup>H NMR data also showed the existence of four methoxy groups at  $\delta_H 3.82$  (6H, s), 3.80 (6H, s). These NMR signals suggested the presence of two syringoyl groups in **1** [4]. This was confirmed by its <sup>13</sup>C NMR spectra data at  $\delta_C 57.0$  (3', 5', 3", 5"-OMe), 121.2 (C-1'), 108.6 (C-2'), 149.1 (C-3'), 142.7 (C-4'), 149.1 (C-5'), 108.6 (C-6'), 120.2 (C-1''), 108.5 (C-2''), 149.1 (C-3'''), 142.4 (C-4''), 149.1 (C-5''), 108.5 (C-6''). The remaining resonances were attributable to a glucosyl moiety [ $\delta = 5.89$  (d, J = 8.4 Hz, H-1), 5.20 (dd, J = 10.8, 8.4 Hz, H-2), 3.89 (dd, J = 12.0, 1.2 Hz, H-6a), 3.84 (t, J = 8.4 Hz, H-3), 3.75 (dd, J

= 12.0, 4.8 Hz, H-6b), 3.56 (m, H-4, 5), 94.8 (C-1), 75.1 (C-2), 79.4 (C-5), 71.6 (C-4), 75.8 (C-3), 62.4 (C-6)]. These data summarized above suggested that **1** was a syringate-glucoside derivative [5]. HMBC correlation between H-1 ( $\delta_{\rm H}$  5.89) and C-7' ( $\delta_{\rm C}$  166.7) and correlation between H-2 ( $\delta_{\rm H}$  5.20) and C-7" ( $\delta_{\rm C}$  166.5) established the connections between the two syringoyl groups and the glucosyl moiety. From a biosynthetic point of view, the configuration of the glucose was tentatively determined to be D since many compounds containing D-glucose have been isolated from this plant previously. Therefore, the structure of **1** was established as shown in Figure 1.



The known compound was identified as erigeside C [7]. The two isolated compounds were tested for the cytotoxic activities against HepG2, A-549, and HeLa cancer cell lines. The IC<sub>50</sub> values of all compounds were greater than than 100  $\mu$ M. These results showed that the two compounds displayed no cytotoxic activities.

## Acknowledgments

This work was financially supported by the National Natural Science Foundation of Hainan Province (No.20158362).

#### **Supporting Information**

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

#### References

- [1] T, Kanchanapoom, M. S. Kamel, R. Kasai, K. Yamasaki, C. Picheansoonthon and Y. Hiraga (2001). Lignan glucosides from *Acanthus ilicifolius*, *Phytochemisty* **56**, 369-372.
- [2] T. Kanchanapoom, M. S. Kamel, R. Kasai, C. Picheansoonthon, Y. Hiraga and K. Yamasaki (2001). Benzoxazinoid glucosides from *Acanthus ilicifolius*, *Phytochemisty* 58, 235-236.
- [3] D. Zhao, L. Xie, L. Yu, N. An, Na. Wei, F. Chen, Y. B. Li, Y. F. Tan and X. P. Zhang (2015). New 2-Benzoxazolinone derivatives with cytotoxic activities from the roots of *Acanthus ilicifolius, Chem. Pharm. Bull.* 63, 1087-1090.
- [4] K. Machida, Y. Yogiashi, S. Matsuda, A. Suzuki and M. Kikuchi (2009). A new phenolic glycoside syringate from the bark of *Juglans mandshurica* MAXIM. var. sieboldiana MAKINO, *J. Nat. Med.* 63, 220-222.
- [5] X. L. Zhou, S. Huang, X. L. Zhou, J. Weng and C. J. Wang (2012). New tannin-related compounds from *Tagets ercta, China J. Chin. Mater. Med.* 37, 315-318.
- [6] N. I. Aminudin, F. Ahmad, M. Taher and R. M. Zulkifli (2016). Cytotoxic and antibacterial activities of constituents from *Calophyllum ferrugineum* Ridley, *Records of Natural Products* 10, 649-653.
- [7] J. M. Yue, Z. W. Lin, D. Z. Wang and H. D. Sun (1994). A sesquiterpene and other constituents from Erigeron berviscapus, Phytochemistry 36, 717-719.



© 2016 ACG Publications