

Rec. Nat. Prod. 6:2 (2012) 156-160

records of natural products

Volatile Constituents of Romanian Coriander Fruit

Anna Tsagkli^{1,} Monica Hancianu², Clara Aprotosoaie², Oana Cioanca² and Olga Tzakou^{1*}

(Received January 16, 2011; Revised February 26, 2011; Accepted March 23, 2011)

Abstract: The essential oils of Romanian coriander fruits (cultivar "Sandra") were obtained by hydrodistillation and analyzed by means of GC and GC-MS. Sixty compounds were identified in the total essential oils. Monoterpenes were the most dominant class of compounds, with linalool (48.4-54.3%) being the major component. Other significant compounds were γ -terpinene (9.2-12.1%), α -pinene (5.5-9.3%) and limonene (4.7-6.3%).

Keywords: Coriandrum sativum; essential oil composition; linalool; γ-terpinene; α-pinene; limonene.

1. Plant Source

Coriander (*Coriandrum sativum* L., Umbelliferae) is a long cultivated annual herb, native to Mediterranean Europe and Western Asia, now extensively cultivated in many temperate countries [1,2,3]. The genus name *Coriandrum* is derived from 'koros' in reference to the fetid smell of the leaves [3]. Hippocrates (ca. 460-377 B.C.E.) refers coriander in traditional Greek medicine [3]. This plant, preserved in Tutankhamun's tomb (1325 BC), is now used as a flavoring agent in food (confectionary, bread, curry powder), perfumes, cosmetics and pharmaceutical preparations [1,3,4]. The parts most in use are the dried ripe fruits (commonly called coriander seeds) and leaves [4]. Traditionally *C. sativum* fruits have been used as an aromatic carminative, stomachic, antispasmodic and laxative [3,4,5]. Studies have shown its sedative and anxiolytic activity [6,7]. Additionally, coriander fruit extracts present blood pressure lowering activity [8]. In this work, we report on essential oil composition of coriander fruits (original Romanian cultivar "Sandra") cultivated in Secuieni experimental fields under the same pedoclimatic condition.

_

¹ Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Panepistimioupoli Zographou, 15771 Athens, Greece

² Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, "Gr. T. Popa" University of Medicine and Pharmacy Iasi, Romania

^{*} Corresponding author: E-Mail: tzakou@pharm.uoa.gr

2. Previous Studies

According to literature coriander fruits contain 0.1 to 2% essential oil of which 45 to 85% linalool [3-5]. The essential oil from fruits of *C. sativum* of Italian origin was found to contain large amounts of linalool (65-79%) [9]. Also in this essential oil were also present camphor (3%), γ -terpinene (4-7%), geranyl acetate (2-4%), α -pinene (1-3%), geraniol (1-2%) and limonene (1-3%) [9]. The essential oil of *C. sativum* from Canada was also characterised by the abundance of linalool (64.0-84.6%), with the monoterpenes camphor (3.4-6.2%), α -pinene (1.2-3.2%), phellandrene (1.7-4.1%), linalool acetate (2.4-3.3%), limonene (0.7-1.8%), p-cymene (0.5-1.3%) and geranyl acetate (0.9-1.6%) being the others significant metabolites [10]. Sriti et al. studied the composition of the essential oil of Tunisian *C. sativum* fruits; linalool was present in 86.1%, while the amount of the other characteristic compounds were lower [11]. The major constituents of the fruits essential oil of *C. sativum* from Bangladesh were linalool (37.7%), geranyl acetate (17.6%) and γ -terpinene (14.4%) [12].

3. Present Study

Mature infructescences of coriander samples (C1-C6) were collected from the experimental fields Secuieni (Romania) in 2009. *C. sativum* cv. 'Sandra' was cultivated under the same pedo-climatic condition, the differences being the distance between plants and between planting rows. Air dried fruits of each sample were subjected separately to hydrodistillation for 3 hours using a modified Clevenger-type apparatus with a water-cooled oil receiver to reduce artifacts, to obtain the essential oils. The essential oils were dried over anhydrous sodium sulfate and kept at -4° C until analysis.

GC/MS: Analysis of the essential oils was performed using a Hewlett Packard (Hewlett Packard GmbH, Waldbronn, Germany) model 5973-6890 GC-MS system operating in the EI mode at 70eV, equipped with a split/splitless injector (200 $^{\circ}$ C). The transfer line temperature was 250 $^{\circ}$ C. Helium was used as carrier gas (1 mL/min) and the capillary column used was HP 5MS (30 m × 0.25 mm; film thickness 0.25 μ m; Agilent, Palo Alto, CA, USA). The temperature program was the same with that used for the GC analysis; split ratio 1:10. The injected volume was 1 μ L. Total scan time 83.33 min. Acquisition mass range 40-400 amu. The identification of the compounds was based on comparison of their retention indices (RI), their retention times (RT) and mass spectra with those obtained from authentic samples (purchased from the Sigma-Aldrich Co, (Sigma-Aldrich, Buchs SG, Switzerland) and/or the NIST/NBS, Wiley libraries (available through Hewlett Packard) and the literature [13].

GC/FID: GC analysis of the essential oils was carried out using a SRI (Brooks, Hatfield, PA, USA) 8610C GC-FID system, equipped with DB-5 capillary column (30 m x 0.32 mm; film thickness 0.25 μ m; J & W, CA, USA) and connected to a FID detector. The injector and detector temperature was 280 °C. The carrier gas was He, at flow rate of 1.2 mL/min. The thermal program was 60 °- 280 °C at a rate of 3 °C/min; split ratio 1:10. Two replicates of each oil were processed in the same way. The injected volume was 1 μ L.

Six samples of *C. sativum* fruits cultivated under different conditions were hydrodistilled to yield 2.00 % v/w (C1-C5) and 1.87% v/w (C6) of yellow essential oils with a pleasant odor. Sixty one compounds were characterized representing 99.7-99.9% of the total essential oils (Table 1). Monoterpenes was the predominant class of compounds, with linalool (48.4-54.3%) being the major component which has a floral and pleasant note. Other significant compounds were: γ -terpinene (9.2-12.1%), α -pinene (5.5-9.3%), limonene (4.7-6.3%), camphor (5.1-5.7%), linalool acetate (1.8-7.5%), neryl acetate (t-4.4%) and geranyl acetate (0-6.2%). The results were in accordance with literature, where monoterpenes have been reported to be the main class in *C. sativum* fruit oils [3-5, 10-13] with linalool being the predominant compound, while camphor and limonene were present in the oil. According to Teuscher the essential oil composition of coriander fruits depends on the chemotype [5].

Chemotypes from Arabian peninsula and the Indian subcontinent do not contain limonene or camphor [5].

The most appropriate sample for commercial use was C4, having a yield of 2.0 % v/w, the highest percentage of linalool (54.3%), and the other typical constituents in percentages close to those of the European Pharmacopoeia [14]. Linalool is a metabolite with antiseptic, bactericide, viricide, fungicide, insectifuge, sedative, spasmolytic, cancer-preventive properties, widely used in perfumery [15].

Table 1. Chemical composition (%) of the essential oils of *Coriandrum sativum* cv. "Sandra" fruits from Romania.

from Romania.									
RIlit.	RIexp.	Compounds	Sample	Sample	Sample	Sample	Sample	Sample	
			<u>C1</u>	<u>C2</u>	<u>C3</u>	C4	C5	<u>C6</u>	
		Monoterpenes							
		hydrocarbons							
927	925	Tricyclene	t	-	-	t	t	t	
930	927	α-Thujene	t	-	t	t	t	t	
939	937	α-Pinene	5.5	7.9	8.3	9.1	7.4	9.3	
954	952	Camphene	1.2	1.4	1.4	1.5	1.4	1.6	
975	972	Sabinene	t	-	t	t	t	t	
979	977	β-Pinene	1.7	2.5	2.2	2.2	2.4	2.4	
991	989	Myrcene	1.4	2.0	1.6	1.6	2.0	1.7	
1017	1015	α-Terpinene	t	t	t	t	t	t	
1025	1022	p-Cymene	t	-	-	t	t	t	
1029	1026	Limonene	4.7	-	-	6.1	6.3	5.9	
-		p-Cymene +	-	6.7	5.6	-	-	-	
		Limonene							
1032	1029	(Z) - β -Ocimene	-	-	-	t	-	-	
1044	1041	(<i>E</i>)-β-Ocimene	-	-	-	t	-	-	
1060	1058	γ-Terpinene	9.2	11.5	11.0	11.4	11.4	12.1	
1089	1086	Terpinolene	1.0	1.3	1.0	1.0	1.3	1.1	
		$\sum_{i=1}^{n}$	24.7	33.3	31.1	32.9	32.2	34.1	
		Oxygenated							
		monoterpenes							
1097	1094	Linalool	50.7	48.4	53.8	54.3	49.6	51.3	
1146	1143	Camphor	5.7	5.3	5.3	5.1	5.1	5.3	
1153	1150	Citronellal	-	-	t	t	-	t	
1165	1161	Pinocarvone	t	-	t	t	t	t	
1169	1165	Borneol	0.3	0.2	t	t	0.2	t	
1177	1173	Terpinen-4-ol	0.6	0.5	0.4	0.4	0.5	0.4	
1189	1185	α-Terpineol	0.9	0.7	0.6	0.5	0.7	0.6	
1196	1193	Myrtenol	t	-	-	-	t	-	
1205	1202	Verbenone	t	-	-	-	t	t	
1226	1223	Citronellol	0.5	0.4	0.2	t	0.4	t	
1238	1234	Neral	-	0.1	t	-	-	-	
1238	1235	trans-Chrysanthenyl	-	-	-	-	-	-	
		acetate							
-		Neral + <i>trans</i> -	0.1	-	-	t	0.1	t	
		Chrysanthenyl acetate							
1243	1239	Carvone	t	t	-	-	t	t	
1253	1248	Geraniol					3.3		
1257	1253	Linalool acetate					1.8		

1267 1264 Geranial 0.2 0.2 0.2 t 0.2 t 1290 1286 Thymol t t - - t t 1392 1236 Carvacrol t t - - t t 1327 1323 Myrtenyl acetate 0.1 0.1 t t 0.1 t 1353 1348 Cironellyl acetate t t t - t t 1362 1358 Neryl acetate t 4.2 t 3.0 4.4 t 1375 1370 Linalool isobutanoate t - - t - - 1381 1377 Geranyl acetate t 4.2 t 3.0 4.4 t 1375 1370 Carnyl acetate t 4.2 t 3.0 4.4 t 1377 Geranyl acetate 6.2 - 3.5 - 3.6 Σ	-		Geraniol + Linalool acetate	7.6	5.2	4.3	3.4	-	4.1
1290 1286	1267	1264		0.2	0.2	0.2	f	0.2	f
1299 1296 Carvacrol t									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	_		
1353 1348 Citronellyl acetate t t t t 3.0 4.4 t 1375 1370 Linalcol isobutanoate t t - - - -				0.1	0.1	t	t	0.1	t
1362 1358 Neryl acetate				t	t	t	-	t	t
1381 1377 Geranyl acetate 6.2 - 3.5 - - 3.6 65.3	1362	1358		t	4.2	t	3.0	4.4	t
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1375	1370	Linalool isobutanoate	t	-	-	t	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1381	1377							
hydrocarbons hydrocarbons 1415 1415 (E)-Caryophyllene 0.6 0.4 0.3 0.3 0.5 0.4 1455 1451 α-Humulene t t t - - t - 1500 1496 Bicyclogermacrene 0.1 t - - 0.1 t 1561 1556 Germacrene B - - t - -			Σ	72.9	65.3	68.3	66.7	66.4	65.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.410	1.415	•	0.6	0.4	0.2	0.2	0.5	0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-			- +
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					ι	-	-		ι
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1301	1550			0.4		0.3		0.4
sesquiterpenes 1563 1558 (E)-Nerolidol t -<			L	0.7	0.4	0.3	0.3	0.0	0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			• •						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
1583 1579 Caryophyllene oxide t - - - - - 1593 1598 Viridiflorol 0.1 - - - - - 1608 1602 Humulene epoxide II t - - - - - 1640 1635 epi-α-Cadinol t t - - t -				t	-	-	-	-	-
			1		-	-	-	-	-
					-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1640	1635				-	-		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Σ	0.1	t	-	-	t	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Phenylpropanoids						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1196	1192		0.1	0.2	-	t	t	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1285	1283		0.4	0.4	t	t	0.2	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\sum_{i=1}^{n}$	0.5	0.6	t	t	0.2	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Other components						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1202	1201		0.1	0.1	t	t	0.1	t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	_	-	_	t	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				t	_	-	-	t	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.2	t	-	-	0.2	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1510	1506		tr	-		-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1613	1608	Tetradecanal	t	t	-	-	t	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1655	1651	2-Tetradecenal	-	t	-	-	0.2	-
1840 1837 Hexahydrofarnesyl 0.2 t t - acetate	1664	1660	Tetradec-2-enal	0.3	t	-	-	0.2	-
acetate	1700	1700	Heptadecane	t	-	-	-	t	-
\sum 0.8 0.7 t t 0.7 t	1840	1837	Hexahydrofarnesyl	0.2	t	-	-	t	-
<u> </u>									
Total (%) 99.7 99.7 99.7 99.9 99.9 99.8 PHit – literature retention indices [13]:Plays – experimental retention indices relative to C. C. malkanes on the	D. 711		Total (%)	99.7	99.7	99.7	99.9	99.9	99.8

RIlit.= literature retention indices [13]; RIexp.= experimental retention indices relative to C_9 - C_{23} n-alkanes on the HP-5MS column; t= trace (<0.1%)

References

- [1] D. J. Mabberley (1997). The Plant–Book. Cambridge University Press, Cambridge.
- [2] T. G. Tutin (1968). Coriandrum L. in Flora Europaea, T.G. Tutin, V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters and D.A. Webb (Eds.), Cambridge University Press, Cambridge, 2, 328.
- [3] M. Blumenthal (2000). Herbal Medicine. Expanded Commission E Monographs. American Botanical Council, Austin, 75-77.
- [4] A. Y. Leung and S. Foster (1996). Encyclopaedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics, 2nd ed., John Wiley & Sons Inc, New York, 193-195.
- [5] E. Teuscher, U. Bauermann and M. Werner (2006). Medicinal Spices, MedPharm, CRC Press, Stuttgart, 143-147.
- [6] M. Emamghoreishi, M. Khasaki and M. F. Aaazam (2005), *Coriandrum sativum*: evaluation of its anxiolytic effect in the elevated plus-maze, *J. Ethnopharm.* **96**, 365-370
- [7] M. Emamghoreishi and G. Heidari-Hamedani (2006). Sedative-hypnotic activity of extracts and essential oil of Coriander seeds, *Iran. J. Med. Sci.* 31, 22-27
- [8] Q. Jabeen, S. Bashir, B. Lyousi and A. H. Gilani (2009). Coriander fruit exhibits gut modulatory, blood pressure lowering and diuretic activities, *J. Ethnopharm.* **122**, 123-130
- [9] C. Grosso, V. Ferraro, A. C. Figueiredo, J. G. Barroso, J. A. Coelho and A. M. Palavra (2008). Supercritical carbon dioxide extraction of volatile oil from Italian coriander seeds, *Food Chem.* **111**, 197-203.
- [10] V. D. Zheljazkov, K. M. Pickett, C. D. Caldwell, J. A. Pincock, J. C. Roberts and L. Mapplebeck (2008). Cultivar and sowing date effects on seed yield and oil composition of coriander in Atlantic Canada, Ind. Crops Prod. 28, 88-94.
- [11] J. Sriti, T. Talou, W. A. Wannes, M. Cerny and B. Marzouk (2009). Essential oil, fatty acid and sterol composition of Tunisian coriander fruit different parts, *J. Sci. Food Agric*. **89**, 1659-1664.
- [12] N. I. Bhuiyan, J. Begum and M. Sultana (2009). Chemical composition of leaf and seed essential oil of *Coriandrum sativum* L. from Bangladesh, *Bangladesh J. Pharmac.*, **4**, 150-153.
- [13] R. P. Adams (2007). Identification of Essential Oil by Gas Chromatography/Mass Spectroscopy. 4th Ed. Allured Publishing Corporation. Carol Stream, Illinois.
- [14] European Pharmacopoeia (2007). Sixth edition, Council of Europe, Strasbourg, 2, 1620-1622.
- [15] J. A. Duke (1992). Handbook of biologically active phytochemicals and their activities. CRC Press, Boca Raton, Florida.

© 2011 Reproduction is free for scientific studies