A New Ursane-Type Triterpene from the Roots of
Salvia miltiorrhiza Bunge

Le Quoc Hung1,2, Phuong Thien Thuong2 and Nguyen Huu Tung1,∗

1 School of Medicine and Pharmacy, Vietnam National University, Hanoi (VNU); 144 Xuan Thuy St.,
Cau Giay, Hanoi, Vietnam
2National Institute of Medicinal Materials (NIMM); 3B Quang Trung St.,
Hoan Kiem district, Hanoi, Vietnam

(Received July 23, 2018; Revised September 16, 2018; Accepted September 18, 2018)

Abstract: Danshen (Salvia miltiorrhiza) is a one of the most well-known medicinal herbs in the Oriental medicine for
treatment of certain cardiovascular disorders. Our current research on triterpenoid component in danshen roots led to the
isolation of a new highly hydroxylated ursane-type triterpene, urs-12,20(30)-dien-3β,7β,24-triol-28-oic acid (2) and one
known triterpene, epiasiatic acid (1). Their structures were elucidated on the basis of extensive spectroscopic analyses
including NMR and MS spectra and comparison with literature data. The new compound 2 showed medium activity
against HL-60 cells with the IC50 value of 16.3 μM. The obtained results of unique bioactive triterpenes from danshen
contributed not only to its phytochemical profile associated with chemotaxanomy but also to biological evidence of the
title plant.

Keywords: Danshen; Salvia miltiorrhiza; Lamiaceae; triterpene. © 2018 ACG Publications. All rights reserved.

1. Plant Source

Salvia miltiorrhiza Bunge (Lamiaceae), commonly known as red sage or danshen, is one of the most
used herbs in the Oriental medicine. Danshen is widely cultivated in China and other Asian countries
including Korea, Vietnam and Australia to yield typical red roots [1,2], which are highly valuable and been
used for the treatment of heart disease and improving cardio-cerebral circulation [3]. We have carried out
study on phytochemical profile of danshen in Vietnam and herein report the newly results of investigation on
triterpenoid constituents.

2. Previous Studies

Regarding phytochemical profile, a number of secondary metabolites have been identified from the
title plant, revealing that nonpolar abietane-type diterpenes such as tanshinone I, tanshinone IIA, and
cryptotanshinone and polar phenolic acid including salvianolic acids A-C and lithospermic acid B are the

* Corresponding author: E-Mail: tunginpc@gmail.com
principle constituents of the danshen root [4,5]. In addition, several other compounds including common sterol and triterpenes were readily reported together during the isolation procedures for the two above-mentioned-compound classes and it is noteworthy that the major constituents of the aerial parts are triterpenes and be found effective on antiatherosclerosis [6]. Recently, the newly isolated compounds have been ongoing reported from danshen [7,8].

3. Present Study

Our ongoing study on terpenoid profile of the title sample resulted in the isolation of one known compound, epiasiatic acid (1), and one new highly hydroxylated ursane-type triterpene, urs-12,20(30)-dien-3β,7β,24-triol-28-oic acid (2). This paper deals with the isolation and structural identification of the two newly isolated triterpenes.

The air-dried danshen root sample was first extracted with EtOH-H2O (80:20, v/v) and then solvent partition procedure to obtain the EtOAc portion found to contain triterpenoid, which was followed by various column chromatography to yield the triterpenes (for the detail separation, see Supporting information, S1-S2), whose structures were elucidated on the basis of extensive physicochemical data including NMR and MS spectra together with comparison with those in the literature (Figure 1). To our knowledge, this is the first report of epiasiatic acid (1) in danshen.

Urs-12-ene-2α,3β,24-triol-28-oic acid (Epiasiatic acid, 1): white amorphous powder; ESI-MS: m/z 489.2 [M + H]+; 1H NMR (400 MHz, CD3OD): δ 5.22 (1H, br s, H-12), 3.74 (1H, d, J = 11.6 Hz, H-24a), 3.60 (1H, m, H-3a), 3.29 (1H, d, J = 11.6 Hz, H-24b), 2.91 (1H, d, J = 9.6 Hz, H-2β), 1.16 (3H, s, CH3), 1.09 (3H, s, CH3), 1.00 (3H, s, CH3), 0.92 (3H, s, CH3), 0.94 (3H, d, J = 6.0 Hz), 0.83 (3H, d, J = 6.0 Hz); 13C NMR (125 MHz, CD3OD): δ 47.0 (C-1), 69.1 (C-2), 85.4 (C-3), 42.6 (C-4), 49.1 (C-5), 19.0 (C-6), 33.8 (C-7), 39.6 (C-8), 48.2 (C-9), 38.6 (C-10), 23.8 (C-11), 125.9 (C-12), 138.9 (C-13), 42.6 (C-14), 28.5 (C-15), 24.9 (C-16), 48.5 (C-17), 53.5 (C-18), 39.7 (C-19), 39.5 (C-20), 31.1 (C-21), 37.6 (C-22), 22.9 (C-23), 65.8 (C-24), 17.0 (C-25), 17.3 (C-26), 26.2 (C-27), 181.1 (C-28), 17.4 (C-29), 21.4 (C-30) [9].

Urs-12,20(30)-dien-3β,7β,24-triol-28-oic acid (2): white amorphous powder; [α]D25 = +12 (c 0.15, CH3OH); HR-ESI-MS: m/z 487.3431 [M + H]+ (calcd for C30H52O5, 487.3423); 1H NMR (500 MHz, CD3OD) and 13C NMR (125 MHz, CD3OD): see Table 1.

Figure 1. Structures of the two isolated triterpenes from the roots of *S. miltiorrhiza*

Compound 2 was obtained as a white amorphous powder and its molecular was determined to be C30H52O5 by HR-ESI-MS (m/z 487.3431 [M + H]+; calcd for C30H52O5, 487.3423). In consistent with those of epiasiatic acid (1), the NMR data suggested that 2 have structural features typical of an urs-12-en-28-oic acid [10,11]. The 1H NMR spectrum detected an olefinic proton at δ 5.28 (1H, br t, J = 3.5 Hz), four oxygen-bearing resonances at δ 3.94 (1H, m), 3.77 (1H, br d, J = 2.5 Hz), 3.67 (1H, d, J = 11.5 Hz), and 3.41 (1H, d, J = 11.5 Hz), four singlet methyls (δ 1.22, 1.13, 1.00, 0.86), and one doublet methyl at δ 1.02 (d, J = 6.0 Hz), respectively. In addition, 13C and DEPT analyses detected two olefinic carbons (δ 139.6 and 126.6), three oxygenated carbons (δ 74.6 CH, 67.0 CH, and 65.9 CH2), five methyl signals (δ 24.1, 23.1, 17.8, 17.5, 16.8), and one carboxylic carbon (δ 182.2), respectively. Moreover, the other proton and carbon signals assignable to rings A, B, C, and D were in agreement with those reported for urs-12-en-3β,7β,24-triol-28-oic acid [12],
whereas the signals assignable to ring E were different. The NMR spectra of 2, compared with ursolic acid, lacked a doublet methyl signal (Me-30) and contained a typical pair of germinal olefinic protons at \(\delta \) 4.68 and 4.63 (each 1H, br s) in the \(^1\)H NMR as well as a quaternary carbon (\(\delta \) 155.0, C) and secondary carbon (\(\delta \) 104.9, CH\(_2\)) in the \(^{13}\)C NMR and DEPT spectra proposed an exo-methylene group (>C=CH\(_2\)). The location of the exocyclic double bond at C-20 was suggested by the absence of the Me-30 signal and confirmed by the resonances of the neighboring carbons C-18, C-19, C-21, and C-22 as well as in compatible with those of the similar molecules of urs-12,20(30)-dien-28-oic acid [13,14].

Table 1. NMR spectroscopic data (500 MHz, CD\(_3\)OD) for 2

<table>
<thead>
<tr>
<th>Position</th>
<th>(\delta_c) (mult)</th>
<th>(\delta_H) (J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42.8, CH(_2)</td>
<td>1.61 m, 1.30 m</td>
</tr>
<tr>
<td>2</td>
<td>34.6, CH(_2)</td>
<td>1.56 m, 1.36 m</td>
</tr>
<tr>
<td>3</td>
<td>74.6, CH</td>
<td>3.77 br d(2.5)</td>
</tr>
<tr>
<td>4</td>
<td>45.4, C</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>50.0, CH</td>
<td>1.35 m</td>
</tr>
<tr>
<td>6</td>
<td>19.4, CH(_2)</td>
<td>1.54 m, 1.35 m</td>
</tr>
<tr>
<td>7</td>
<td>67.0, CH</td>
<td>3.94 m</td>
</tr>
<tr>
<td>8</td>
<td>40.9, C</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>49.0, CH</td>
<td>1.76 m</td>
</tr>
<tr>
<td>10</td>
<td>39.2, C</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>24.6, CH(_2)</td>
<td>2.03 m, 1.92 m</td>
</tr>
<tr>
<td>12</td>
<td>126.6, CH</td>
<td>5.28 br t(3.5)</td>
</tr>
<tr>
<td>13</td>
<td>139.6, C</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>43.5, C</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>29.4, CH(_2)</td>
<td>1.11 m, 1.03 m</td>
</tr>
<tr>
<td>16</td>
<td>25.5, CH(_2)</td>
<td>2.20 m, 1.75 m</td>
</tr>
<tr>
<td>17</td>
<td>48.5, C</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>56.8, CH</td>
<td>2.32 d(12.0)</td>
</tr>
<tr>
<td>19</td>
<td>38.8, CH</td>
<td>2.40 dd(12.0, 6.5)</td>
</tr>
<tr>
<td>20</td>
<td>155.0, C</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>33.5, CH(_2)</td>
<td>2.30 m, 2.20 m</td>
</tr>
<tr>
<td>22</td>
<td>40.6, CH(_2)</td>
<td>1.85 m, 1.66 m</td>
</tr>
<tr>
<td>23</td>
<td>23.1, CH(_3)</td>
<td>1.13 s</td>
</tr>
<tr>
<td>24</td>
<td>65.9, CH(_2)</td>
<td>3.67 d(11.5), 3.41 d(11.5)</td>
</tr>
<tr>
<td>25</td>
<td>16.8, CH(_3)</td>
<td>1.00 s</td>
</tr>
<tr>
<td>26</td>
<td>17.8, CH(_3)</td>
<td>0.86 s</td>
</tr>
<tr>
<td>27</td>
<td>24.1, CH(_3)</td>
<td>1.22 s</td>
</tr>
<tr>
<td>28</td>
<td>182.2, C</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>17.5, CH(_3)</td>
<td>1.02 d(6.0)</td>
</tr>
<tr>
<td>30</td>
<td>104.9, CH(_3)</td>
<td>4.68 s, 4.63 s</td>
</tr>
</tbody>
</table>

Assignments were confirmed by DEPT, COSY, HSQC, HMBC, and NOESY spectra

The indication of \(3\beta \)-OH was evidenced by the \(^1\)H NMR signal at \(\delta \) 3.77 (1H, br d, \(J = 2.5 \) Hz)) and the relatively upfield \(^{13}\)C NMR signal at \(\delta \) 74.6 [12,14] in conjunction with the assignment of 24-CH\(_2\)OH evidenced by the two typical germinal protons [\(\delta \) 3.67 (1H, d, \(J = 11.5 \) Hz) and 3.41 (1H, d, \(J = 11.5 \) Hz)] and in respect to those of related ursane derivatives with \(3\beta,24 \)-diol [10,12]. The proton signal at \(\delta \) 3.94 (1H, m) was typical for the oxymethin \(7\beta \)-OH as evidenced by downfield-shifted resonances of respective C-6 (\(\delta \) 19.4) and C-8 (\(\delta \) 40.9), the spin coupling system of H-5—H-7 observed in the COSY spectrum, and HMBC correlations of H-5/C-7 and H-9/C-7 [12] (Figure 2).
A new ursane triterpene from *Salvia miltiorrhiza*

Figure 2. Key HMBC (arrow) and H-H COSY (bold line) correlations for 2

In concern of stereochemistry, the conformation between the five fused rings of the ursane skeleton is unambiguously rigid [10,11]. The 1H and 13C NMR data indicated the orientation of β-OH [12,14], which was confirmed by the NOE correlations of H-3α/H-5 in the NOESY spectrum of 2. The hydroxyl group at C-7 was then determined as β-orientation on the basis of the NOESY correlations of H-7α/H-3α, H-5/H-7α, and H-7α/H-9, while no NOESY cross-peak of H-7/H$_\alpha$-25 and H-7/H$_\beta$-26 was observed (Figure 3). The full assignments of the 1H NMR and 13C NMR data of 2 were listed in Table 1. Based on the above analyses, the structure of 2 was unambiguously identified urs-12,20(30)-dien-3β,7β,24-triol-28-oic acid (2).

Figure 3. Stereochemistry with selected NOESY correlations of 2

Antiproliferative activity of the two isolated compounds was tested on the leukemia HL-60 cell line using the MTT assay [15,16]. As the results, while compound 1 showed negligible effect (IC$_{50} > 30$ μM, the new compound 2 exhibited medium activity with the IC$_{50}$ value of 16.3 μM in compared with mitoxantrone (positive control, IC$_{50} = 7.2$ μM).

In the viewpoint of chemotaxonomy, the abundance of pentacyclic triterpenoids has been well documented from various *Salvia* species including oleane, ursane, lupane, and taraxerane skeletons [17,18]. Among them, ursane and oleane contents represent more common and highly structural diversity based on unsaturated degree and oxidized positions with hydroxyl and oxo functions in their molecules. To our knowledge, the feature of 7-OH and/or $\Delta^{20(30)}$ in the triterpene molecules from *Salvia* species and nature is relatively rare and, to date, only very few such derivatives have been reported including dehydrouvaol and micromeric acid from *S. horminum*, respectively [18].

In consistent with literature review of *Salvia* spp [5,17,18] and our researches [7], various ursane and oleane triterpenes have been identified in both aerial and root parts of danshen, and concentrated in EtOAc portion with not low yield, it appears that triterpenoid components need be cited along with hydrophobic diterpenes (tanshinones) and hydrophilic phenolic acids in the chemical profile of danshen. In conclusion, the occurrence of various ursane and oleane triterpenes contributed in part evidence of the chemotaxonomy, biological activity and potential in medicinal use of danshen.
Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106-YS.05-2015.05.

Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/RNP

ORCID
Le Quoc Hung: 0000-0001-8331-2859
Phuong Thien Thuong: 0000-0003-0334-379X
Nguyen Huu Tung: 0000-0001-6005-9280

References