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Abstract: mTOR, a member of the phosphatidylinositol 3-kinase-related kinase family, controls major 

physiological cellular processes such as growth and metabolism in response to nutrients, growth factors, and 

cellular energy levels. Deregulation of the mTOR activity has been associated with various pathological conditions 

such as cancer, diabetes, obesity, neurological diseases, and genetic disorders. Therefore, research on the mTOR 

signalling pathway and the development of effective molecules on this pathway has been continuing intensively 

in recent years. In the past decade, numerous mTOR inhibitors have been developed and many are currently in 

clinical trials. These molecules are classified as Rapamycin and its analogs (all are termed rapalogs), ATP-

competitive dual PI3K/mTOR inhibitors, mTOR kinase inhibitors, and Rapa Links. In this review, we aimed to 

summarize current findings on mTOR signalling network and molecules acting on this signalling pathway. 
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1. Introduction 

As the name implies, the history of the target of rapamycin (TOR) is closely linked to the 

discovery of the rapamycin. Rapamycin, a secondary lipophilic macrolide metabolite, with the chemical 

formula of C51H79NO13, produced by Streptomyces hygroscopicus, was first isolated in the 1970s in 

the soil of Easter Island (Rapa Nui). Rapamycin was first discovered as a potent antifungal agent, but it 

has also been shown to exhibit antitumor and immunosuppressant effects 1. mTOR plays a central role 

in the regulation of cell growth, metabolism, and proliferation 2-4. The presence of two rapamycin targets 

(TOR1 and TOR2) in yeast cells in 1991 clarified the underlying causes of the antiproliferative activity 

of rapamycin. In 1994, the mammalian analogs of the yeast TOR complexes were found as mTORC1 

and mTORC2 3,5. Thus, it was understood that TOR was evolutionarily conserved from yeasts to 

mammals. The brief history of mTOR is shown in Figure 1. 
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Figure 1. The timeline of key discoveries of rapalogs. 

 

1.1. Structure and Features of mTOR 

The mammalian or mechanistic target of rapamycin (mTOR) is a 290 kDa, intracellular, atypical 

serine/threonine kinase that belongs to the family of phosphatidylinositol 3-kinase (PI3K) 6,7. The N 

terminus possesses 20 tandem HEAT repeats and this is present in many proteins and is implicated in 

protein-protein interactions 8. The C-terminal includes half of mTOR the kinase domain, which has 

sequence similarity with the catalytic domain of phosphatidylinositol 3-kinase (PI3K) 9. Instantly 

upstream of the catalytic domain is the FRB domain and, mTOR includes a comparatively large FAT 

(for FRAP, ATM, TRAP) domain. The FATC domain is essential for mTOR activity, and the deletion 

of a single amino acid from this domain cancels the activity 10,11. It has been suggested that the FATC 

and FAT domains interact to yield a configuration that evinces the catalytic domain. mTOR besides 

contains a putative negative regulatory domain (NRD) between the catalytic and FATC domains 12. 

mTOR forms the catalytic core of two functionally distinct complexes, mTORC1 and mTORC2 which 

have different functions and signal networks. These complexes play a critical role in the fundamental 

cellular processes 13,14. In comparison with mTORC1, comparatively than little is known about the 

function of mTORC2 15. mTORC1 was composed of mammalian lethal with SEC13 protein 8 (mLST8), 

proline-rich Akt substrate of 40 kDa (PRAS40), Dep domain-containing mTOR-interacting protein 

(Deptor) and the regulatory associated protein of mTOR (Raptor) fraction 16. Raptor and mLST8 

positively regulate mTOR’s activity and functions, while PRAS40 and Deptor are the negative 

regulators of the mTORC1 17,18. mTORC1 comprehensively senses nutrients, growth factors, mitogens, 

and stress signals, hence being generally associated with cell growth by regulating important cellular 

processes, involved the translation of mRNAs into the synthesis of key proteins for proliferation, lipid 

synthesis, mitochondrial biogenesis, and autophagy 2,19. mTORC1 beside suppresses an important 

catabolic process, autophagy, both by inhibiting its activation and by suppressing the production of 

lysosomes, the organelles in which autophagy occurs 13,20. Another complex is mTORC2 which is 

composed of, a rapamycin-insensitive companion of mTOR (Rictor), mLST8, stress-activated protein 

kinase-interacting protein 1 (SIN1) and protein observed with Rictor (Protor) 1 and 2 fractions 21. 

mTORC2 regulates cell survival, cytoskeleton organization, lipogenesis and gluconeogenesis 2. Three-

dimensional structure of mTORC1 and structure of mTOR are shown in Figure 2. 
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Figure 2. Structure of mTOR. DEPTOR, Dep domain-containing mTOR-interacting protein; mLST8, 

mammalian lethal with SEC13 protein 8; mSIN1, mammalian stress-activated protein kinase-interacting 

protein1; PRAS40, proline-rich Akt substrate of 40 kDa; Protor1/2, protein observed with Rictor 1 and 

2 fractions; Raptor, regulatory assosicated protein of mTOR; Rictor, rapamycin-insensitive companion 

of mTOR.  

  

 

1.2. mTOR Signalling Network 

The mTOR signalling network is a potent regulator of anabolic and catabolic processes 

including protein synthesis, cell proliferation as well as autophagy and, a central controller of cell 

growth. The mTORCs differ from in terms of upstream modulators, substrate specificity, functional 

outputs, and susceptibility to inhibitors 22. mTORC1 signalling is activated by several intracellular and 

extracellular inputs, including the Ras/Raf/MEK/ERK network and the  PI3K/AKT network, the 

intracellular energy levels, and nutrients 23,24. The essential targets of mTORC1 are S6K and a eukaryotic 

translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) 25. Especially, mTORC1 signalling 

positively regulates the main component of the cell’s protein synthesis machinery, eukaryotic initiation 

factor eIF4E 26. mTOR inhibits 4EBP1 and actives S6K to activate protein synthesis, ribosome 

biogenesis, nutrient transport and lipid synthesis in return for nutrients, growth factors and cellular 

energy 27. The main inhibitor and negative upstream regulator of mTORC1 are TSC (tuberous sclerosis 

complex) 1 and TSC2 heterodimer protein complex 28. The TSC1/2 heterodimer inhibits mTOR 

signalling by acting as a GTPase activating protein (GAP) towards the small GTPase Ras homolog 

enriched in brain (Rheb) 29,30. Numerous signalling networks regulate the TSC1/2 heterodimer function 

as a central coordinator of mTOR signal transduction. Growth factors, nutrients, cytokines, hormones, 

and cellular energy levels activate many networks, for example, PI3K-Akt and RAS-mitogen-activated 

protein kinase (MAPK) activates mTORC1 signalling network (via impairment of TSC1/2 function) 

while leading to the inhibition of the TSC1/2 function. In contrast to the mitogenic network, the energy-

sensing AMP-dependent protein kinase (AMPK) inhibits mTOR signal transduction by phosphorylating 

and activating TSC2 31. As a result, activated mTORC1, further through S6 kinase 1 (S6K1), 4E-binding 

protein-1 (4EBP1), cyclin-dependent kinases (CDKs), and the hypoxia-inducible factor 1α (HIF1α), 

promotes energy metabolism, protein synthesis and lipogenesis, proliferation, and growth 32. However, 

there is a relative paucity of information regarding the mTORC2 function. The most well-known 

functions of mTORC2 are the organization of the actin cytoskeleton and maintenance of cell viability. 

Unlike with mTORC1, the guanosine triphosphate‐binding protein Rheb (Ras homolog enriched in 

brain) is not an upstream activator of mTORC2 and indeed, upstream regulators of mTORC2 have not  



4 Targeting mTOR 

 

 

been defined. mTORC2 can be activated directly by phosphatidylinositol 3,4,5‐trisphosphate and 

insulin. mTORC2 activates multiple PKA, PKC, and PKG family kinases, including, PKCα, and 

serum/glucocorticoid regulated kinase 1 (SGK1) 33-36. Significantly, mTORC2 signalling is also 

regulated by mTORC1 due to a negative feedback loop between mTORC1 and insulin/PI3K signalling. 

Moreover, Akt seems to have a complex dual role on mTOR, as of upstream regulator of mTORC1 and 

a downstream target of mTORC2. The schematic representation of the mTOR signalling network is 

shown in Figure 3. 

 

 

 

 

Figure 3. The shematic representation of the mTOR signalling network. 4EBP1, eukaryotic initiation 

factor 4E-binding protein 1; Akt, protein kinase B; DEPTOR, dep domain-containing mTOR-interacting 

protein; eIF4e, eukaryotic initiation factor 4E; eNOS, endothelial nitric oxide synthase; GLUT4, glucose 

transporter type 4; HIF-1α, hypoxia-inducible factor 1α; IRS, insulin receptor substrate; mLST8, 

mammalian lethal with SEC13 protein 8; mSIN1, mammalian stress-activated protein kinase-interacting 

protein1; mTORC, mammalian target of rapamycin complex; NO, nitric oxide; PI3K, 

phosphatidylinositol 3-kinase; PRAS40, proline-rich Akt substrate of 40 kDa; Protor1/2, protein 

observed with Rictor 1 and 2; RAPTOR, regulatory assosicated protein of mTOR; Rheb, Ras homolog 

enriched in brain; RICTOR, rapamycin-insensitive companion of mTOR; S6K, S6 kinase; VEGF, 

vascular endothelial growth factor; SGK1, serum/glucocorticoid regulated kinase 1; TSC, tuberous 

sclerosis complex. 

 

 

 

 

 

 



 Kilic et al., Bioorg. Med. Chem. Rep. (2019) 2:1-2 1-14 5 

 

 

1.3. Current mTOR Inhibitors 

In the past decade, numerous mTOR inhibitors have been developed and many are currently in 

clinical trials for various diseases treatment 37. These are 1) rapamycin and its derivatives (rapalogs), 2) 

ATP-competitive dual PI3K/mTOR inhibitors, 3) ATP-competitive mTOR kinase inhibitors (TORKIs), 

and 4) RapaLink-1. 

 

 

1.3.1. Rapamycin and Rapalogs (First-Generation mTOR inhibitors) 

The best-known mTOR inhibitor rapamycin, macrocyclic antibiotic produced by the bacterium 

Streptomyces hygroscopicus, is the first inhibitor discovered 38,39. Rapamycin was discovered as a potent 

antifungal agent, but it also exhibited antiproliferative, antitumoral, and immunosuppressive effect. 

Rapamycin was approved due to immunosuppressive activity by FDA firstly 40-42. By the reason of their 

important antiproliferative, neuroprotective/neuroregenerative and cellular effects, during the last two 

decades, researchers worldwide have developed new semisynthetic rapamycin analogs with similar and 

more specific pharmacological properties 43,44. Rapamycin is an allosteric inhibitor of mTORC1 and 

binds to the FRB domain, outside the ATP-binding pocket, together with FKBP12 45,46. This effect 

reduces the interaction between mTOR and Raptor, resulting in a decrease in mTORC1 activity 47. Some 

studies have shown that although there is no mTORC2 interaction with rapamycin, this molecule 

changes mTORC2 activity depending on dose, time, and cell type. Therefore, rapamycin can inhibit 

mTORC2 activity during chronic treatment or long-term exposure 22,48,49. Rapamycin analogs are called 

as rapalogs which are temsirolimus, everolimus, ridaforolimus (previously name as deforolimus), 

zotarolimus, WYE-592, ILS-920 50-53. Rapamycin has been clinically confirmed for prophylaxis of 

organ rejection for renal transplant patients 54. Temsirolimus, dihydroxymethyl propionic acid ester of 

rapamycin, was formulated to increase the solubility of rapamycin and so it can be used to orally and 

intravenously 55. Everolimus is an O-(2-hydroxyethyl) substitution at position C-40 on the rapamycin 

structure was designed an orally proper rapamycin analog. It was developed to improving the oral 

bioavailability of rapamycin. 56,57. Ridaforolimus, a phosphorus-containing analog of rapamycin, was 

designed depending on computational modelling studies. According to rapamycin, ridaforolimus has 

more suitable pharmacological properties, including aqueous solubility, chemical stability and 

bioavailability 58. The chemical structures of some of these molecules are shown in Figure 4. 

 

1.3.2. ATP Competitive Dual PI3K/mTOR Inhibitors  

mTOR is a member of PIKK-related family sharing a high degree of similarity/sequence 

homology within the catalytic domain with PI3K, for this reason, the next logical approach was the 

development of ATP-competitive dual PI3K/mTOR inhibitors 59,60. As mentioned above, rapamycin and 

rapalogs only partially inhibit mTORC1-dependent translation and cause feedback activation of several 

signalling networks, including PI3K/Akt. Therefore, several mTOR/PI3K dual inhibitors have been 

developed 61,62. The development of these agents has benefited from previous attempts with PI3K-

selective inhibitors 63,64. The therapeutic advantage of these dual-acting inhibitors is their high efficacy 

and low risk of drug resistance development, so they are considered to be superior to first-generation 

mTOR inhibitors 65. The prototype molecule of dual PI3K/mTOR inhibitors is pyridofuropyrimidine PI-

103. It was never clinically used because of its rapid in vivo metabolism. Over the next few years, other 

dual PI3K/mTOR inhibitors were developed; the imidazoquinoline derivative NVP-BEZ235 

(dactolisib), GDC-0980 (apitolisib), and PKI-587 (gedatolisib) 66,67. The chemical structures of these 

molecules are shown in Figure 5. 
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Figure 4. Chemical structures of rapamycin and rapamycin analogs. 
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Figure 5. Chemical structure of ATP competitive dual PI3K/mTOR inhibitors. 

 

 

1.3.3. mTOR Kinase Inhibitors (Second-Generation mTOR Inhibitors)  

 mTOR kinase inhibitors, also known as ATP-competitive inhibitors, block only the catalytic 

domain of mTOR resulting in widespread inhibition of the mTOR signalling 68,69. This new generation 

of mTOR inhibitors is ATP analogs that inhibit mTOR kinase activity by competing with ATP for 

binding to the kinase domain in mTOR22. mTOR kinase inhibitors exhibit a much lower half-maximal 

inhibitory concentration (IC50) against mTOR than PI3K 59. A small molecule designed to compete with 

ATP in the catalytic kinase domain of mTOR would be expected to inhibit all of the kinase-dependent 

functions of mTORC1 and mTORC2. Unlike rapalogs that only target mTORC1, the mTOR kinase 

inhibitors inhibit both mTORC1 and mTORC2 activity. Because of the similarity between the kinase 

domains of mTOR and the PI3Ks, several mTOR kinase inhibitors may also cause PI3K activity 

inhibition as well as mTOR inhibition. Moreover, the antiproliferative and anticancer activity of these 

compounds has been superior to the first-generation of mTOR inhibitors in cell models 70,71. Torin 1, 

Torin 2, Ku-0063794, AZD8055, AZD2014 (Vistusertib), CZ415, INK128/MNL0128 (now referred to 

as TAK-228), OSI-027, WYE354, WYE312, WYE687, WAY600, Palomid 529, GDC-0349, CC223, 

and XL388 are known mTOR kinase inhibitors 72. The chemical structures of some of these molecules 

are shown in Figure 6. 
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Figure 6. Chemical structure of mTOR kinase inhibitors. 
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1.3.4. Rapa Links (Tird-Generation mTOR Inhibitors) 

Recently, the third generation of mTOR inhibitors has been reported. Because of the poor 

efficacy, resistance mechanisms and serious side effects of the previously mentioned drugs, third-

generation mTOR inhibitors have been developed. The RapaLink is the representative of this generation 

and it synchronously associates with and allosterically inhibits mTORC1 by the way of FRB domain 

while blocking the catalytic activity of this mTOR complex by binding to the ATP-binding pocket of 

mTOR itself 73. Its chemical structure is shown in Figure 7. This molecule is a bivalent mTOR inhibitor 

and has been generated by binding rapamycin to MLN0128 molecules that effectively inhibit mTOR 

kinase activity. Especially, RapaLink-1 also leads to inhibition of both mTORC1 and mTORC2 by 

acting on their downstream targets. Further studies are needed to clarify the effects of RapaLink on the 

immune system, autophagy and feedback mechanisms 73,74. 

 

 

 
 

Figure 7. Chemical structure of RapaLink 1. 

 

 

2. Conclusion  

 Although the discovery of mTOR in the last two decades, the importance and function of the 

mTOR signalling pathway is just beginning to be understood. It is not surprising, given its importance 

in normal physiology and in several diseases, that so much attach importance to has been dedicated to 

understanding mTOR signalling pathways and to developing agents that interfere with signalling 

through mTOR. Many aspects of the mechanisms of action of mTOR inhibitors and their clinical effects 

remain unknown. While the pharmacological profiling of rapalogs is be clarified, much less is known 

about the other mTOR inhibitors. Therefore, a great deal of research has focused on mTOR inhibitors 

and elucidating the mechanisms linking mTOR signalling. New inhibitors may be developed because of 

the side effects or limited effects of existing drugs. Besides, due to the physiological importance of 

mTOR, new indications for inhibitory molecules targetting this signalling pathway may arise. 

Consequently, studies on the characterization of the mTOR signalling pathway and the development of 

new molecules targeting this pathway will also continue in the future. 
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