Eudesmane Sesquiterpenoids from *Salvia plebeia*

Ying Lu*1,2* and Yifang Chen1

1 Department of Pharmacy, The First People's Hospital of Yuhang District, Hangzhou 311100, China
2 School of Medicine, Zhejiang University, Hangzhou 310058, China

(Received October 22, 2020; Revised November 29, 2020; Accepted December 16, 2020)

Abstract: A new eudesmane sesquiterpenoid (1), named sapleudesone, together with four known analogs (2–5) were isolated from the aerial parts of *Salvia plebeia*. The structure of compound 1 was established by NMR and HRESIMS data, and the absolute configuration of 1 was determined by comparing the experimental ECD spectrum with the calculated ECD spectra. The known compounds were identified to be salplebeone A (2), linderolide I (3), chlorantene D (4), and chlomultin B (5), respectively, by comparing the NMR data and specific rotations with reported data. All five compounds were tested for the inhibitory effects against NO production in LPS-activated RAW 264.7 macrophages. As a result, compound 2 exhibited weak inhibitory effects with an IC50 value of 42.3 ± 1.4 μM.

Keywords: *Salvia plebeia*; eudesmane sesquiterpene; inhibitory effects; NO production. © 2021 ACG Publications. All rights reserved.

1. Plant Source

The aerial parts of *Salvia plebeia* R. Br. were collected in October 2018 in Jiangsu Province, P. R. China, and were identified by Prof. Jianyong Zhu of Shanghai University of Traditional Chinese Medicine. The voucher specimen (accession number: Sap201810) was deposited at Zhejiang University (HZU).

2. Previous Studies

S. plebeia R. Brown is a biennial herb widely distributed in China, especially in Shaanxi, Jiangsu, Fujian, Guizhou, Hunan, and Guangdong Provinces, it is used for the treatment of bruises, flu, sore throat, pediatric convulsion, and vomiting blood in Traditional Chinese Medicine [1]. Previous chemical investigations of this plant led to the isolation of sesquiterpenoids [2-6], diterpenoids [7,8], and flavonoids [9]. The eudesmane sesquiterpenoids are major metabolites of this plant, and several cases showed significant anti-inflammatory effects, such as salviplenoid and salviplenoid A [5, 10].

*Corresponding author: E- Mail: Lu_ying20081030@126.com (Y. Lu).
2. Present Study

The aerial parts of *S. plebeia* (1.0 kg) was extracted with 95% EtOH (4 × 2 L) at room temperature to give an extract (98 g). The extract was further suspended in water (1 L) and extracted with petroleum ether (4 × 0.5 L) and EtOAc (4 × 0.5 L), respectively. The EtOAc extract (57 g) was separated on silica gel chromatographic column (CC) gel (petroleum ether/ EtOAc, 10:1 to 1:1) to obtain six fractions (Fra.A–Fra.F). Fra. C was chromatographed over silica gel CC (petroleum ether/acetone, 20:1 to 1:1) to afford three subfractions (Fra.C1–Fra.C3). Fra.C1 was further purified by silica gel CC (petroleum ether/ EtOAc, 10:1 to 5:1) to yield 1. Fra.C2 was purified by silica gel CC (petroleum ether/acetone, 20:1 to 10:1) to give 2, 3, and 5. Fra. C3 was further purified by ODS C18 silica gel CC with MeOH/H2O (60:40 to 90:10) as mobile phase to give 4.

![Figure 1](image-url)

Figure 1. Structures of compounds 1–5

Sapuleudone (1): Colorless oil; [α]D25 -178 (c 0.1, MeOH); ECD (c 1.1 × 10-3 M, MeOH) λmax (Δε) 329 (−1.55), 286 (−0.81), 241 (+11.2) nm; HRESIMS m/z 235.1695 [M + H]+ (calcd for C13H22O2, 235.1698). 1H NMR (400 MHz, DMSO-d6): δH 5.79 (1H, s, H-3), 4.79 (1H, s, H-12b), 4.78 (1H, s, H-12a), 3.62 (1H, m, H-8), 2.50 (1H, m, H-5), 2.29 (1H, d, J = 15.0 Hz, H-1b), 2.09 (1H, d, J = 15.0 Hz, H-1a), 2.03 (1H, m, H-7), 1.87 (3H, s, H-15), 1.81 (1H, d, J = 13.0, 3.4 Hz, H-6b), 1.75 (3H, s, H-13), 1.70 (1H, dd, J = 12.3, 4.6 Hz, H-9a), 1.45 (1H, d, J = 13.0 Hz, H-6a), 1.34 (1H, dd, J = 12.3, 11.0 Hz, H-9b), 0.84 (3H, s, H-14). 13C NMR (100 MHz, DMSO-d6): δC 197.2 (C-2), 162.2 (C-4), 146.9 (C-11), 125.3 (CH-3), 110.9 (CH2-12), 65.4 (CH-8), 53.5 (C-7), 53.2 (CH2-1), 47.9 (CH2-9), 45.8 (CH-5), 37.8 (CH-10), 27.9 (CH2-6), 21.0 (CH2-15), 19.3 (CH2-13), 16.9 (CH3-14).

The molecular formula of compound 1 was established as C13H22O2 by HRESIMS data (m/z 235.1695 [M + H]+, calcd m/z 235.1698), suggesting 5 indices of hydrogen deficiency. The 1H NMR spectrum displayed signals for two olefinic methyls (δH 1.87, 1.75), a tertiary methyl (δH 0.84), three olefinic protons (δH 5.79, 4.79, 4.78), an oxygenated proton (δH 3.62). The 13C NMR spectrum exhibited 15 carbon resonances, including four olefinic carbons for two double bonds (δC 162.2, 146.9, 125.3, 110.9), a carbonyl carbon for a ketone (δC 197.2), and an oxygenated methine (δC 65.4). Detailed analyses of the 2D NMR data established an eudesmane sesquiterpene skeleton for compound 1 (Figure 2). Especially, the HMBC correlations from H3-15 (δH 1.87) to C-3 (δC 125.3), C-4 (δC 162.2), and H2-1 (δH 2.29, 2.09) to C-2 (δC 197.2) assigned an α,β-unsaturated ketone moiety residing at C-2, C-3, and C-4. Additional HMBC correlations from H3-13 (δH 1.75) and the exomethylene protons H2-12 (δH 4.79, 4.78) to C-7 (δC 53.5) and C-11 (δC 146.9) located an isopropenyl group at C-7 (δC 53.5). The 1H-1H COSY correlations from H-7 (δH 2.03) to H2-9 (δH 1.70, 1.34) via the the oxygenated proton H-8 at δH 3.62 positioned a hydroxyl group at C-8 (δC 65.4).
The NOESY correlations of H$_{3}$-14 (δ_{H} 0.84) with H-8 (δ_{H} 3.62) and between H-5 (δ_{H} 2.50) and H-7 (δ_{H} 2.03) determined the same orientation of H$_{3}$-14 and H-8, while H-5 and H-7 were in opposite face relative to H$_{3}$-14 (Figure 2). The absolute configuration of 1 was determined by comparison of its experimental and calculated electronic circular dichroism (ECD) spectra (Figure 3). The experimental ECD spectrum showed positive Cotton effect at 241 nm, which was similar to the Cotton effect of the calculated ECD spectrum of 1a ($5R$, $7R$, $8S$, $10S$-1) at 241 nm, allowing the assignment of the absolute configuration of 1 to be $5R$, $7R$, $8S$, and $10S$. Compound 1 was given the trivial name sapleudesone.

The known compounds were identified to be salplebone A (2) [6], linderolid I (3) [11], curcolonol (4) [12], chlomultin B (5) [13], respectively, by comparisons of the NMR data and optical rotations with reported data.

Compounds 1–5 were tested for the inhibitory effects against NO production in LPS-activated RAW 264.7 macrophages following the procedures in the literature [14-16]. As results, only compound 2 exhibited weak inhibition rate of 63.2% at the initial concentration of 50 μM and had an IC$_{50}$ value of 42.3 ± 1.4 μM, other compounds showed inhibition rate less than 30% at 50 μM, and the positive control quercetin possessed an IC$_{50}$ value of 17.5 ± 1.1 μM.
Supporting Information

Supporting Information accompanies this paper on http://www.acgpubs.org/journal/records-of-natural-products

ORCID
Ying Lu: 0000-0002-4385-0529
Yifang Chen: 0000-0003-3120-7218

References

