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Abstract:  Click chemistry, a modular synthetic strategy for synthesizing the assembly of novel molecular entities, has 

made a tremendous impact in the field of science since its debut. This powerful strategy relies mainly upon the 

construction of carbon–heteroatom bonds using spring-loaded reactants. Its growing number of applications are found 

in nearly all areas of modern chemistry ranging from drug discovery to materials science. This manuscript includes 

important aspects of the copper-catalyzed Huisgen cycloaddition reaction, which is considered a gold standard of click 

chemistry due to its biocompatibility and reliability, along with its applications in bioconjugation, drug delivery and 

polymer chemistry. A bird′s eye view of recent progress in developing the copper-free click chemistry protocols such 

as catalyst-free strain-promoted alkyne–azide cycloaddition (SPAAC) click chemistry has also been provided. 
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1. Introduction 

 The term "click chemistry" was first introduced by Dr. Barry Sharpless group in 1999 at the 217th 

American Chemical Society annual meeting,1 later in 2001, Kolb, Finn and Sharpless, in their land mark 

review, described it as concept for conducting organic reactions, which was based upon the premise that 

organic synthesis should focus attention on highly selective, simple orthogonal reactions that give 

heteroatom-linked molecular systems with high efficiency under mild reaction conditions.2 Several 

efficient reactions, which are capable of producing a wide catalogue of functional synthetic molecules 

and organic materials have been grouped accordingly under the term click reactions. The rule of thumb 

for this approach was that “…all searches must be restricted to molecules that are easy to make”. 

 Click chemistry concerns with a generation of the substances by joining small, selective and 

modular building blocks together with heteroatom links (C-X-C).  These building blocks contain a high 

built-in energy content that drives a spontaneous and irreversible linkage reaction with complementary 

sites in other blocks and work reliably in both small- and large-scale applications. Click Chemistry dictates 

a "guiding principle"- A principle born to meet the demands of modern day chemistry.  

In order to reach up to a status of click reaction, a process must fulfil certain conditions. Reaction 

must be  

a) modular 

b) with wider scope  

c) high yielding 
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d) generating only harmless byproducts which could be removed easily by employing 

nonchromatographic methodologies  

d) stereospecific (but not necessarily enantioselective) 

e) under milder reaction conditions (ideally insensitive to air and water) 

f) conducted with readily available starting materials and reagents 

g) under either no or some benign solvent 

h) generating stable product under physiological conditions 

e) orthogonality with other common organic synthesis reactions 

Carbon-heteroatom bond forming reactions comprise the most common examples (Scheme 1), 

including the following classes of chemical transformations:  

a) nucleophilic ring opening reactions: epoxides, aziridines, aziridinium ions etc.2 

b) non-aldol carbonyl chemistry: formation of ureas, oximes and hydrazones etc. 

c) additions to carbon–carbon multiple bonds: especially oxidative reactions such as aziridation,3 

hydroxylation,4 epoxidation,5 nitrosyl and sulfenyl halide additions,6 and Michael additions of Nu–H 

reactants.  

d) Cycloaddition reactions: especially 1,3-dipolar cycloaddition reactions as well as hetero- Diels-Alder 

reactions.7-9 

 

 
 

Scheme 1.  Summary of the most popular click reactions 



 

Amna and Ozturk, Org. Commun. (2021) 14:2 97-120 

 

99 

Amongst all the reactions which achieve "click status", the Huisgen 1,3-dipolar cycloaddition of 

alkynes and azides to yield 1,2,3-triazoles is undoubtedly the premier example of a click reaction.10-14 The 

most primitive azide-alkyne cycloaddition was explored by Huisgen and coworkers during 1950-70s. 

Although the reaction was highly exothermic with low reaction rate and yield, it had a great impact on 

further research. The requirement of high temperature and pressures for this reaction were the biggest 

constraint for its application in living systems. It was not that popular until the use of copper as a catalyst, 

which solved this issue. The discovery of the Cu(I) catalyzed azide–alkyne cycloaddition in 2002 (Scheme 

2) transformed CC from a working concept to an accepted reality. This reaction is usually conducted under 

mild conditions using diverse available substrates, highly yielding 1,4-regioisomers of 1,2,3- triazoles as 

sole products instead of regiorandom triazole adducts which complies fully with the definition of the 

conceptual click chemistry. This "near perfect" reaction has become synonymous with CC, and is often 

referred to as "The Click Reaction". This water-tolerant reaction is thermodynamically favorable by 

approximately 30-35 kcalmol-1.  

 
Scheme 2. The Cu(I) catalyzed Huisgen ‘click reaction’ results in exclusive formation of 1,4-triazole, 

whilst the thermally induced Huisgen cycloaddition usually results in an approximately 1 : 1 

mixture of 1,4- and 1,5-triazole stereoisomers 

 

Over the past five years, it has been observed that the very best click reaction classes proceed most 

rapidly and in highest yield, not in water or water–co-solvent mixtures15 but floating on water.1 For 

instance, 1,3-dipolar cycloadditions between diethyl acetylenedicarboxylate and diazido-

cyclohexanediols proceed best in pure water.1 When water is omitted so that the above reactants are mixed 

neat, the reactions are much slower and less selective, and, on a larger scale, become dangerous, as click 

chemistry reactions are highly exothermic. The presence of water in these reactions is beneficial, not just 

for reactivity but also because water is the best heat-sink for handling the enormous heat output when 

click reactions are performed on larger scales. Another advantage of employing water as a reaction solvent 

is that its presence prevents interference from simple protic functional groups, like amides and alcohols, 

which are enormously present in biologically active organic molecules.16 

The advent of click chemistry has had a profound influence on almost every branch of chemical 

science and it has become a ubiquitous chemical tool with applications in nearly all areas of modern 

chemistry from chemical to material science. An overview of the recent advancements of click chemistry 

in different fields have been given below. 

2.  Bioconjugation 
 

Bioconjugation encompasses a broad arena of science at the interface between chemistry and 

molecular biology, involving the formation of covalent links between synthetic labels and biomolecular 

frameworks. It involves biocompatible reactions joining substrates to biomolecules in a selective, fast and 

high-yielding manner.17 Covalently linking two molecular entities is a challenge for molecular biologists 

and chemists while studying the biological systems, for instance, attaching a small molecular probe 

(fluorescent dye, radical probe, affinity tag, etc.) onto a biopolymer or linking a complex carbohydrate 

with a peptide. Because of the diverse functional reactivity and structural complexity, one has to find out 

selective ligation reactions, allowing the coupling of two mutually and uniquely reactive functional 
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groups, usually in an aqueous environment under physiological conditions. These functional groups 

should be selective for each other as well as capable to tolerate other functionalities, hence circumventing 

the need to use protecting groups and ideally allowing applications of the molecules in the complex 

environment of a living cell.  

Reactions employing azide moiety as a functional group are mostly employed in bioconjugation 

and they are known to offer following advantages;18-21 (i) the azide moiety is absent in almost all natural 

existing compounds and (ii)despite a high intrinsic reactivity, azides allow selective ligation with a very 

limited set of reaction partners. 

The Huisgen 1,3-dipolar cycloaddition of azides and acetylenes to give 1,2,3-triazoles was 

identified as an interesting candidate after Sharpless et al. Realization of achieving higher functional group 

compatibility by employing electrocyclic reactions instead of encountering limitations imposed by 

electrophile-nucleophile reactions. The groups of Sharpless and Finn employed the azide-alkyne coupling 

in the parallel synthesis of a highly active inhibitor of the enzyme acetylcholinesterase (AchE) 5.21 

Sharpless and Finn chose a strategy that involved a biological target that should literally guide the inhibitor 

synthesis by serving as a template for the assembly of building blocks instead of using a conventional 

approach in which a diverse set of chemical compounds is first synthesized and subsequently screened 

against the biological target in question. 

 
 

Scheme 3. Template-guided synthesis of the highly active AChE inhibitor 1 by azide-alkyne coupling. a) 

AchE (0.03 equiv), pH 7.4 buffer, RT, 49 parallel reactions 

 

Complementary pairs of a selection of site-specific inhibitors based on tacrine and 

phenanthridinium motifs containing alkyl acetylenes 1 and 3 and alkyl azides 2 and 4 of different chain 
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lengths were incubated in the presence of electrophorus AChE at room temperature (Scheme 3). In the 

absence of enzymesl rate of reaction under these conditions was negligible, hence, detectable amounts of 

triazole products formed only when the azide and alkyne were brought together by the enzyme, enforcing 

propinquity and proper alignment of the reactants. Amongst 49 reactions, only one combination yielded 

a detectable amount of coupled product. This substance 1 turned out to be the most potent noncovalent 

AChE inhibitor known, with Kd values ranging from 77 fM (AChE from Torpedo californica) to 410 fM. 

The fact that azide and alkyne tags may easily be introduced into small molecules and proteins through 

chemical synthesis and common in vitro protein modification procedures, have revolutionized 

bioconjugate chemistry, particularly when Cu(I)-chelating ligands are employed in the coupling reaction. 
However, the low intrinsic reaction rate of the azide-alkyne coupling-key for the experiment 

described above, was supposed to be dramatically increased in order to make this reaction attractive as a 

general bioconjugation strategy.22 A catalyst was needed to be identified for accelerating the reaction as 

increasing the temperature was not an option due to the sensitivity of the biological materials towards 

heat. Catalytic amounts of Cu(I) salts was found to accelerate the rate of reaction as well as improve the 

regioselectivity to deliver exclusively the 1,4-disubstituted product (Scheme 4). Cu(I)-catalyzed azide-

alkyne coupling proved to be compatible with the numerous functional groups23-25 such as thioethers, 

carboxylic acids, esters, amides, ethers, thiols, alcohols, phenols, amines, guanidines and carbamates. 

 
Scheme 4. Catalytic cycle of the Cu(I)-catalyzed azide-alkyne coupling 

 

 

Bioconjugation based on crosslinking primary amines to carboxylic acid groups has found broad 

applications in protein modification, nanomaterial functionalization and drug development. However, 

proteins tend to give nonselective bioconjugation when primary amine-based crosslinking is employed. 
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Thus, selective bioconjugation is required for controlling the protein orientation and activity after 

conjugation. 

Yuan Liu and co-workers reported an efficient and cysteine-selective thiol-ene click reaction-based 

bioconjugation protocol employing colloidal nanoparticles.26 The resulting thiol-ene based enzyme 

nanoconjugates and aptamer displayed excellent enzymatic activity and target binding ability, 

respectively. Colloidal nanoparticle-based bioconjugates containing manganese oxide, iron oxide and 

UCNP were designed and crosslinkers were tested by HS-aptamer labeling, HS-PEG Pegylation and 

enzyme immobilization. Thiol–ene crosslinker was found to be stable and robust by Gel electrophoresis. 

Furthermore, the binding ability of aptamer to its target cells or the catalytic activity of HRP enzyme was 

not affected by the stable and robust thiol–ene linkage between dopamine acrylamide functionalized 

UCNPs and aptamer or HRP. Bioconjugates based on reactions with nanomaterials have enormous 

potential in such fields as material sciences and biology. In particular, the stability and superior selectivity 

of the thiol–ene make it a potential candidate to be used in multifunctional nanomaterial bioconjugates, 

making this a powerful tool with broad spectrum of applications in bioimaging, bioanalysis, biosensing, 

drug delivery and theranostics. 

Bioorthogonal reactions have revolutionized the way low-molecular-weight compounds are linked 

to biomolecules. Low-molecular-weight compounds are not able to evoke a secondary, adaptive immune 

response on their own. In order to trigger the cascade of events leading to the proliferation of plasma and 

memory B cells and to the production of high-affinity IgG antibodies, for these so-called haptens, the 

compound have to be linked to an entity carrying epitopes for helper T-cells.27-34 Proteins are the most 

commonly used carriers such as globulins, albumins and hemocyanins, viruslike particles, or toxoids. 

Formation of stable amide bonds between carboxylate groups of the hapten and amine groups of the 

protein has been the most extended protocol for the bioconjugation of small compounds. N-

Hydroxysuccinimidyl esters synthesized via chemistry-mediated carbodiimides were able to efficiently 

react, with solvent-accessible lysine residues, which were ubiquitous in most carrier proteins, under mild 

reaction conditions.35,36   

Daniel López-Puertollano and co-workers reported for the first time that CuAAC chemistry is a 

convenient approach for the preparation of protein-hapten bioconjugates intended for the generation of 

suitable antibodies for immunodiagnostics of small organic chemicals, using mycotoxin ochratoxin A as 

a model compound.37 These results revealed that the participation of the triazole moiety in antibody 

binding is not as critical as previously thought, hence, its presence in the spacer arm does not preclude the 

production of antibodies with apparent affinity constants for the analyte in the subnanomolar range. These 

finding opened the door for achieving highly valuable biotechnological immunoreagents for other relevant 

compounds, like biotoxins, antibiotics and drugs, through unexplored chemical strategies involving 

innovative positions for linker attachment and hapten functionalization. Further studies should certainly 

contribute to clarifying the generalizability of the strategy reported herein.  

The primary amine is a key functional group and one of the most important nucleophiles and bases 

used in all of synthetic chemistry.38-41 The development of methods for conjugating a range of molecules 

to primary amine functional groups has revolutionized the fields of chemistry, biology, and material 

science. Tremendous efforts have been dedicated for the synthesis of molecules containing primary 

amines and methodologies to devise chemical reactions to react with primary amines. In particular, 

primary amines are an abundant functional group found in biological systems as free amino acids, in 

metabolites and signaling molecules and are also present in many classes of natural products. The primary 

amine is the most convenient functional group handle in molecules for ligation to other molecules for a 

broad spectrum of applications due to its ubiquity.42-46  

Sina Elahipanah and co-workers developed a novel traceless, high-yielding, robust click-chemistry 

protocol based on the fast and efficient trapping of amine groups through a functionalized dialdehyde 

group.47 The general reaction has been shown in Scheme 5, for the conjugation of a disubstituted 1,5-

pentanedial 6 with a primary-amine-containing molecule 7 to form a disubstituted 1,4-dihydropyridine 8 

conjugate. This click reaction was conducted under mild reaction conditions, in aqueous medium or in the 

presence of organic solvent and proceeded in high yield with stable starting dialdehyde reagent and 

resulting dialdehyde click conjugates. No dialdehyde-activating group or catalyst was needed for this 

reaction and only water is formed as a byproduct. Reaction proceeded with high atom economy and the 
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starting dialdehyde and the resulting conjugate were both easy to characterize. A scheme was designed to 

synthesize a suite of dialdehyde reagents inorder to demonstrate the broad scope of this new click-

conjugation protocol. The dialdehyde molecules were used for tailoring surfaces for material science 

applications and in cell-surface engineering. The broad utility of the general dialdehyde click chemistry 

to primary amines is anticipated in all areas of chemical research, ranging from bioconjugation and 

polymers to nanotechnology and material science. 

 
Scheme 5. Schematic of a general click-reaction strategy to ligate a primary amine group 7 with a 

dialdehyde group 6 
 

Scheme 6. Synthetic route to generating a suite of dialdehyde reagents 
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The dialdehyde reagents were synthesized with minimal steps and in high yields. Acid 9 was 

converted to 10 in the presence of n-BuLi and excess of iodomethane. Alcohol 11 was obtained by treating 

10 with LiAlH4. 2-((1-Methylcyclopent-3-enyl)methoxy) acetic acid 12 was afforded by the addition of 

NaH and  2-chloroacetic acid to 11. Catalytic amount of OsO4 and excess N-methylmorpholine N-oxide 

50% in H2O at pH 8, were used to obtain compound 13, which was subsequently converted to the key 

intermediate 14 employing catalytic amount of p-TsOH and then large excess of 2,2-dimethoxypropane. 

15 allowed for many dialdehyde-containing reagents to be synthesized. Once the intermediate 10 is 

obtained, a range of probes, monomers, ligands, and molecules could be connected to generate a broad 

suite of dialdehyde reagents (Scheme 6). 

 

 

3. Polymer Chemistry and Macromolecular Engineering 

 

Click reactions, being versatile and simple, can greatly facilitate the synthesis and modification of 

polymeric materials. There is a wide range of polymers that have been synthesized by employing various 

click reactions including  (multi)block copolymers48-51 and micelles,52-56 terminal- and pendant-functional 

polymers,57-61 gels and networks,62-65 complex architectures  such as graft,66-77  star,78-84 brush,57,85-87 

hyperbranched  polymers88-92 and polymers conjugated to nanomaterials.93-103 Many of the polymers that 

are used for further modifications were originally synthesized through controlled polymerization 

techniques. Polymers with pre-determined molecular weight, chain end functionality, narrow molecular 

weight distribution and controlled architecture are usually prepared by using controlled radical 

polymerization (CRP).104-106 The most commonly employed CRP methodologies include reversible 

addition-fragmentation transfer (RAFT) polymerization,107-110 atom transfer radical polymerization 

(ATRP)111-115 and stable free radical polymerization (such as nitroxide-mediated polymerization, 

NMP).116,117 In these strategies, composition, molecular weight and topology is controlled by a fast 

dynamic equilibrium between a dormant and propagating state which sustains a low concentration of 

radicals, hence, suppressing chain termination reactions.118-130 Click chemistry combines particularly well 

with these reactions because the species used to initiate polymerization or mediate the dynamic 

equilibrium can provide functional groups either inherently present or intentionally added that are easily 

converted to “clickable” functionality.  

Modern polymeric material design often involves precise macromolecular synthesis in order to get 

macroscopic material properties of choice. This concept is referred as macromolecular engineering which 

includes the rational design of the macromolecular structure, accurate synthesis, assembly, and processing 

to nanodevices or upramolecular objects, thorough characterization, and theoretical modeling for aiding 

and  optimizing the macromolecular design procedure.131 Precise tailoring of the molecular and 

supramolecular structures required for achieving desirable features such as molecular size, topology, 

uniformity, functionality and composition, is considered core of the macromolecular engineering.132 Click 

chemistry is one of the available tools at researchers’ disposal to tailor the molecular architectures. ATRP 

and CuAAC are often combined together in macromolecular architecture design133 due to the following 

reasons: 

 

a) Cu(I) is used as catalyst in both CuAAC and ATRP. 

b) Both azide and alkyne groups are stable during the course of ATRP as long as they do not coexist in 

the same reaction. 

c) ATRP furnishes polymers containing halogens at their chain ends which can easily be converted to the 

azide groups. 

Concurrent ATRP/CuAAC proved to be a very efficient tool to synthesize an array of diverse 

polymeric materials including brush polymers,134-136 block copolymers,137 networks138 and polymers with 

functional side groups.139,140 

Binbin Xu and coworkers reported the synthesis of well-defined asymmetric molecular double-

brushes consisting of two different side chains linked to the same repeat unit along the backbone by one-

pot concurrent ATRP and Cu-catalyzed azide/alkyne cycloaddition (CuAAC) reaction.141 The double-

brushes were based on a poly(Br-acrylate-alkyne) homopolymer possessing an alkynyl for CuAAC 
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reaction and a 2-bromopropionate initiating group for ATRP in each repeat unit. Employing an acrylate 

type monomer containing both an ATRP initiationsite, i.e., tert-butyl 2-((2-

bromopropanoyloxy)methyl)acrylate (tBBPMA) and an alkyne group, was the key to the successful 

synthesis of Janus armed bottlebrush copolymer. This monomer tBBPMA was polymerized via RAFT to 

afford a polymer with two types of functional side groups on each monomeric unit. Finally, the Janus 

armed bottlebrush copolymer was synthesized in one-pot by concurrent ATRP of vinyl monomers and 

CuAAC coupling of poly(ethylene oxide) with an azide end group (PEO-N3) to afford well-defined 

copolymers with and narrow molecular weight distribution and controlled architecture (Scheme 7). 

 

 
Scheme 7. Synthesis of Janus armed bottlebrush copolymer by concurrent ATRP and CuAAC click   

chemistry 

 

In recent years, various researchers have reported number of excellent examples which involved 

CuAAC reactions to design functional materials with improved properties. However, the majority of 

previous investigations utilized CuAAC reactions alone or multistep reactions; the controlled chain-

growth CuAAC polymerization has rarely been reported because it was hard to be well-controlled and 

furnished polymers with broad molecular weight distribution. Recent developments in the electron 

transfer mediated controlled/“living” radical polymerization (CRP) facilitated the further development of 

the CuAAC reactions because the mechanisms of CuAAC reactions and CRP may have little in common 

using the same copper(I)-catalyst for both protocols.  

Wentao  Xue and co-workers successfully employed the electron transfer mediated “click- radical” 

concurrent polymerization utilizing Cu(0)/PMDETA as catalyst for the generation of well-defined 

copolymers, where controlled CuAAC polymerization of clickable ester monomer was performed in the 

main chain acting as the polymer backbone, the CRP of the acrylic monomer was conducted in the side 

chain.142 Furthermore, strong collaborative effect and compatibility between CRP and CuAAC 

polymerization was observed for  improving the controllability (Scheme 8). 
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Scheme 8. One-step synthesis of brush polymer from small molecules by concurrent ATRP and copper-

catalyzed azide-alkyne cycloaddition (CuAAC) click polymerization 

Click reaction has also been explored for the synthesis of π-conjugated polymers for organic 

electronics including CuAAC and without CuAAC, featuring essential ‘’CLICK’’ attributes. The alkyne-

based click polymerizations, derived from click reactions, have attracted much attention because of their 

advantageous characteristics such as good functional group tolerance, mild reaction conditions, atom 

economy, high regio- and stereo-selectivity and high yields.143-148 Recently, thiol-yne click 

polymerizations have become significant synthetic tools for the preparation of linear as well as  

hyperbranched polysulfides with diverse structure and properties. The alkyne monomers used in majority 

of thiol-yne polymerizations are mainly terminal alkynes while internal alkynes are rarely employed 

because of their relatively low reactivity.  

Jun Du and co-workers developed a catalyst-free click polymerization of activated internal alkynes 

and thiol.149 The polymerization reactions between thiol 16 and electron deficient internal alkynes (17 and 

18) proceeded smoothly in DMF to furnish soluble poly(β-thioacrylate)s (PTAs) with high molecular 

weights and Z-stereoregularities in high yields. 

 



 

Amna and Ozturk, Org. Commun. (2021) 14:2 97-120 

 

107 

 
Scheme 9. Synthesis of P1/17a-c and P1/18a-c by catalyst free click polymerization of thiol 16 with 

internal diynes 17 and 18 

 

Hyperbranched polymers is an emerging class of functional polymeric materials, which has gained 

increasing attention and has found widespread use in the areas of nanomaterials, adhesives, coatings, 

additives, biomaterials, drug delivery carriers, etc. because of their fascinating attributes, such as excellent 

solubility, low intrinsic viscosities, interior cavities and abundant surface functional groups.150-157  Various 

polymerization methods such as condensation polymerization, ring-opening polymerization, self-

condensing vinyl polymerization, proton transfer polymerization and addition polymerization have been 

used for the construction of multifunctional hyperbranched polymers.158-165 However, most of these 

polymerizations require harsh conditions, which complicate the experimental operation and greatly limit 

their applications. Click polymerization has become a powerful tool for the preparation of functional 

polymers due to their distinct features of high efficiency, high selectivity, atom economy and mild reaction 

conditions. At present, functional hyperbranched polymers have been prepared via thiol-ene click 

polymerization, Cu(I)- and Ru(II)-catalyzed azide-alkyne click polymerizations, metal-free azide-alkyne 

click polymerizations and thiol-yne click polymerizations. Recently, another powerful click 

polymerization, i.e., amino-yne click polymerization, has been developed.166-168 This click polymerization 

protocol belongs to the hydroamination reaction, which is a direct and efficient way for the synthesis of 

nitrogen containing functional materials. This polymerization can take place at room temperature without 

the need of any external catalyst, and poly(β-aminoacrylate)s (PAAs) with high molecular weights could 

be obtained in high yields. More importantly, this click polymerization can proceed in a regio- and 

stereospecific fashion, and 100% E-isomers are afforded in an anti-Markovnikov addition manner. 

Benzhao He and co-workers synthesized a series of multifunctional hyperbranched poly(β-

aminoacrylate)s (hb-PAAs) via spontaneous amino-yne click polymerization by employing ester activated 

triyne 19 and diamines 20a-d as monomers.169 Various soluble and thermally stable hb-PAAs with high 

weight-average molecular weights (Mw, up to 18,290) were afforded in high yields (up to 99%) under 

mild reaction conditions. Furthermore, by introducing the aggregation-induced emission (AIE)-active 

tetraphenylethene (TPE) moiety into the backbones, the resultant polymers also displayed a unique AIE 

feature, and their nanoaggregates could be used for the detection of explosives. The special three-

dimensional topologies of hyperbranched polymers could effectively improve their detection sensitivity 

(Scheme 10). 
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Scheme 10. Syntheses of hyperbranched poly(β-aminoacrylate)s by spontaneous amino-yne click 

polymerization 

 

Graft polymers contain complex architecture with multiple polymeric side chains. The synthesis of 

graft copolymers has an advantage of incorporating properties of two or more polymers that are 

functionally distinct from their linear copolymer relatives. Conjugated organic polymers are both 

interesting and feasible to study from a complex architecture viewpoint. Studying complex all-conjugated 

polymers is advantageous for observing the effect of introducing multidimensional architectures on their 

optoelectronic properties. Moreover, the overall increased rigidity of conjugated polymers as compared 

to the nonconjugated polymers is hypothesized to affect the material properties of the resulting graft 

copolymers. 

Nimrat K. Obhi and co-workers used the copper-catalyzed azide-alkyne click (CuAAC) reaction as 

the grafting-to reaction.170 A library of well-defined polythiophene backbones and polyselenophene side 

chains with click-active azide and acetylene functional groups was synthesized using Kumada catalyst 

transfer polymerization (KCTP). Control test reactions displayed excellent azide group tolerance to 

CuAAC click conditions, and successful synthesis of a 100% graft copolymer using a polythiophene 
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backbone and small molecule 4-ethynyl-α,α,α-trifluorotoluene (ETFT) was also performed under these 

conditions. 

Click chemistry reaction conditions were assessed by performing two test reactions. In the first test 

reaction, it was observed that the CuAAC click conditions did not affect the integrity of the azide groups 

on the polythiophene backbone, hence, eliminating the possibility of azide crosslinking during the comb 

reactions. Specifically, a 14.5 kDa polythiophene backbone with 53% N3 was treated with the CuAAC 

click conditions in the absence of any alkyne-functionalized molecules. CuAAC conditions were used 

which are most commonly employed for polymer-polymer click reactions, involving the use of Cu(I)Br 

in conjunction with amine ligand PMDETA with the application of heat (Scheme 11). In the second 

reaction, efficiency of the grafting-to click procedure was assessed by using small molecule alkyne 4-

ethynyl-α,α,α-trifluorotoluene (ETFT) 21. 100% grafting of ETFT to the 53% N3 backbone was obtained 

using the same CuAAC conditions described for the first reaction. The backbone (B1) was treated with a 

stoichiometric amount of the small molecule and 1.2 equivalents of Cu(I)Br/PMDETA relative to the 

percentage of azide groups. Excellent efficiency of the grafting-to procedure using the Cu(I)Br/PMDETA 

click system with a small molecule suggested that this grafting-to procedure could be appropriate for 

comb copolymer synthesis (Scheme 12). 

 

 
 

 

Scheme 11. Synthesis of (a) Polythiophene backbone copolymers and (b) Polyselenophene side chains 

using Kumada catalyst-transfer polycondensation  
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Scheme 12. General scheme for control click reactions using small molecule 4-ethynyl-α,α,α- 

trifluorotoluene 21 

 

4. Drug Delivery 
 

CC is of tremendous help to meet the demand of modern-day chemistry research, mainly drug 

discovery. It uses pairs of functional groups that rapidly and selectively react (click reaction) with each 

other in ecofriendly, mild, aqueous conditions as well as in organic solvents. The selection of each click 

reaction is based on its selectivity, reactivity, biocompatibility, and stability. Click chemistry has greatly 

facilitated the overall drug discovery process by providing easy access to the synthesis of building blocks 

for new molecular entities (NMEs). Although it has by no means replaced existing methods for drug 

discovery, it has complemented and extended them by aiding lead discovery and optimization.171 

Nanosystems that release cancer drugs in response to an external stimulus offers unique advantages 

over commonly used conventional carriers that release their payload in a passive fashion. Reduced 

graphene oxide (rGO) nanosheets with restored sp2 network have been shown to be ideally suited for drug 

loading and release based applications.172-180 Since effective functionalization of the rGO through covalent 

transformations is limited, the non-covalent π- π stacking based functionalization route of rGO scaffold 

has been extensively explored.181-186 On the other hand, this strategy was found to be effective for the 

molecules which are able to form efficient non-covalent interactions. Conjugation of molecules unable to 

undergo such associations with rGO is quite challenging. For the functionalization of rGO, aromatic 

anchoring groups such as tetrathiafulvalene (TTF),183,185 pyrene181,187 and dopamine derivatives184,186 are 

of great significance. Dopamine containing clickable azide and alkyne groups have also been used for the 

functionalization of rGO.184,186  The azide containing rGO could be further modified with alkynyl-

terminated molecules such as ferrocene using Cu(I) catalyzed azide-alkyne Huisgen-type click reaction. 

The azide-alkyne based functionalization of rGO was effective but using copper as a catalyst could be of 

concern for biomedical applications as the cytotoxicity of nanostructures could be enhanced by any trace 

of copper. This necessitates to develop click reactions that do not require metal catalysts such as 

nucleophilic or radical thiol-ene reactions and strain-promoted azide-alkyne cycloaddition (SPAAC).188 

Nucleophilic thiol-ene based reactions using the thiolmaleimide functional group dyad has been 

extensively utilized in bio-conjugations. The maleimide-thiol addition reaction is an efficient protocol that 

could be used under mild reaction conditions without using any catalyst. 

Yavuz Oz and co-workers investigated the maleimide-containing catechol (dopa-MAL) ligand as a 

versatile surface anchor onto reduced graphene oxide (rGO) nanosheets.189 Thiol-maleimide chemistry 

allowed facile attachment of thiol-containing molecules under ambient metal-free conditions. While the 

attachment of glutathione and 6-(ferrocenyl)hexanethiol was used as models, the attachment of a cancer 

cell targeting cyclic peptide, c(RGDfC), opened the possibility of using the dopa-MAL modified rGO as 

a targeted drug delivery system for doxorubicin (DOX). This approach was shown to be effective not only 

for model molecules such as glutathione and ferrocene containing a thiol group, but it was also adaptable 

to the covalent linking of thiol containing tripeptides, such as the cancer cell targeting peptide c(RGDfC). 

The facile fabrication and functionalization to readily obtain a functional material in a modular fashion 

make this clickable-rGO construct an attractive candidate for various useful applications. 
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A metal-free “click” conjugation protocol using strain-promoted click chemistry was explored as a 

facile and fast tool for the functionalization of microbubbles with drug encapsulated nanoparticles, siRNA 

encapsulated micelles and protein molecules.190 This microbubble–therapeutic “click” conjugation 

established in the current study did not require any catalyst or initiator, did not involve toxic agents, had 

ultra-fast reaction speed, and was versatile for the ligation of different anticancer or therapeutic agents to 

the microbubbles. These advantages made it a favorable protocol for use in various biomedical research 

and clinical applications such as therapeutic delivery for inflammation, tumor treatment, thrombosis and 

angiogenesis in different organs and real-time imaging. 

The combination of copper-free click chemistry with metabolic labeling have opened new avenues 

in drug delivery. Nicolas Alcaraz and co-workers conducted a study to determine whether cubosomes 

functionalized with azide or dibenzocyclooctyne (DBCO) groups were able to undergo copper-free click 

chemistry with a strained cyclooctyne or azide, respectively.191 Phytantriol-based cubosomes were 

functionalized by phospholipids containing an azide or DBCO group. The efficiency of “clickability” was 

estimated by the reaction of cubosomes with a complementary dye and determining bound and unbound 

dye through size exclusion chromatography. The clickable cubosomes reacted specifically with a click-

Cy5 dye with minor changes to the shape, size and structure of the cubosomes. This showed that 

cubosomes could retain their unique internal structure while participating in copper-free click chemistry. 

This proof of concept study could pave the way for the utilization of copper-free click chemistry and 

metabolic labeling with cubosomes for targeted drug delivery and imaging. 

In the past few years, Smart hydrogels have become an attractive candidate in biomaterials fields 

for promising applications in drug delivery and tissue engineering.192-197 Hydrogels can change their 

permeability, volume and phase state in response to the external stimuli such as pH,198 temperature,199 

UV-light,200 enzymes,201 electric or magnetic fields202 and/or oxidizing or reducing agents.203 For 

biological applications, pH/temperature responsive hydrogels are considered more useful because 

temperature and pH are the most affected environmental stimuli under in vitro and in vivo conditions.204 

Thiol-ene chick chemistry offers many advantages for hydrogel formation, such as insensitivity to oxygen 

and rapid stoichiometrically controlled polymerization via photoinitiation.205,206 Stimuli-responsive 

chitosan (CS) hydrogels displayed a great potential for drug delivery and tissue engineering; however, the 

structure of these stimuliresponsive CS hydrogels, such as dual pH- and thermo-responsive hydrogels, is 

difficult to control or needs additional crosslinking agents.  

Haichang Ding and co-workers reported a novel dual pH- and thermo-responsive hydrogel system 

by combining pH-responsive C6-OH allyl-modified CS (OAL-CS) with thermo-responsive poly(N-

isopropylacrylamide) (PNIPAM).207 The thiol groups in PNIPAM and the allyl groups in OAL-CS could 

rapidly form crosslinking hydrogel network by “thiol-ene” click chemistry under UV irradiation. The 

swelling ratio of the OAL-CS/PNIPAM hydrogel could be controlled by changing temperature and pH. 

Furthermore, the hydrogel displayed non-cytotoxic nature toward human bone marrow mesenchymal stem 

cells, and the histological analyses revealed the subcutaneous tissue with no signs of inflammation after 

five days of injection in vivo. The results showed that the new OAL-CS/PNIPAM hydrogel had potential 

to serve as a smart injectable platform to be utilized in drug delivery and tissue engineering. 

Clara García-Astrain and co-workers reported a series of chemically cross-linked alginate 

hydrogels, synthesized through click chemistry via Diels-Alder reaction by reacting furan-modified 

alginate and bifunctional cross-linkers.208 Furfurylamine was used for the functionalization of alignate. 

Then, 3D architectures were synthesized with water-soluble bismaleimides. Different substitution degrees 

were obtained for investigating the effect of alginate modification and the cross-linking extent over the 

behavior of the hydrogels. The ensuing hydrogels were analyzed in terms of swelling, microstructure, 

rheological behavior and structure modification. The materials response to external stimuli such as pH 

was also studied, revealing a pulsatile behavior in a large pH range (1–13) and a clear pH-dependent 

swelling. Finally, vanillin release studies were conducted in order to display the potential of these biobased 

materials for drug delivery applications. 
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Click chemistry has become one of the most powerful strategies in materials and biomedical 

sciences due to the efficiency, selectivity and tolerance of this class of reactions to a variety of solvents 

and functional groups. By far the most widely utilized of these efficient transformation reactions is the 

CuI-catalyzed azide–alkyne cycloaddition. This reaction has been creatively employed to facilitate the 

preparation of versatile molecules to be employed in different areas of chemistry including 

bioconjugation, drug delivery and polymer chemistry. Click chemistry has enabled the researchers to 

explore complex materials while simplifying their preparation methods. Additional reactions that can 

provide the benefits of click chemistry have been increasingly investigated, which are helpful in 

expanding the range of available functional groups that can participate in highly efficient chemical 

transformations. Overall, the results from research to date suggest that click chemistry has emerged as a 

valuable tool in biomedical fields as well as in material chemistry. 
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