

Rec. Nat. Prod. 16:2 (2022) 200-205

records of natural products

Neoflavonoids from the Heartwood of Dalbergia melanoxylon

Zhangjun Xu^{®1}, Yang Liu^{®1}, Xiaowei Meng^{®2}, Li Yang^{®1}, Feng Shao^{®1}, Ronghua Liu^{®2*}and Lanying Chen^{®3*}

 ¹ Key Laboratory of Modern Preparation of TCM, Ministry of Education Jiangxi University of Chinese Medicine,Nanchang, Jiangxi 330004, P. R.China
 ² The College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, P. R.China
 ³ National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, P. R.China
 (Received May 10, 2021; Revised June 25, 2021; Accepted June 26, 2021)

Abstract: A new neoflavonoid, (1R, 8R, 9R)-pterolinuse K (1) and six known neoflavonoids (2-7) were obtained from the heartwood of Dalbergia melanoxylon. The structure of the new neoflavonoid was elucidated by extensive NMR investigation, and X-ray crystallographic analysis. Compounds 3 and 6 showed anti-inflammatory activity with IC50 values 23.14 ± 0.30 and $19.46 \pm 1.02 \mu$ M, respectively. Compounds 2-4, 6, 7 were showed cytotoxicity on Caco-2, MDA-MB-468, MDA-MB-231, CT26 cell lines. Moreover, compounds 2, 4 exhibited the significant activity in MDA-MB-231 cell lines with IC50 values 7.54 ± 1.50 and $7.23 \pm 0.40 \mu$ M, respectively.

Keywords: *Dalbergia melanoxylon;* neoflavonoids; anti-inflammatory activity; anti-tumor activity. © 2021 ACG Publications. All rights reserved.

1. Plant Source

The heartwoods of *Dalbergia melanoxylon* Guill. & Perr. (*D. melanoxylon*) were purchased from Fang Cheng Gang market, Guangxi Province, China, in July 2014 and identified by Professor Feng Xu at the product quality inspection center of Guangxi University. A voucher specimen (No. Liu-20140702) was deposited in the Key Laboratory of Innovation Drug and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine.

The article was published by ACG Publications

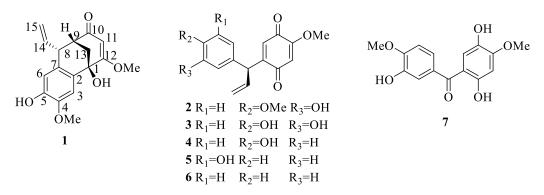
http://www.acgpubs.org/journal/records-of-natural-products March-April 2022 EISSN:1307-6167

DOI: <u>http://doi.org/10.25135/rnp.267.2105.2071</u> Available online: July 17, 2021

^{*} Corresponding author: E- Mail: <u>rhliu@163.com</u> (R. -H. Liu) and <u>clv5831@163.com</u> (L. -Y. Chen)

2. Previous Studies

Neoflavonoids were belong to the flavonoids class with the structural of C6-C3-C6, it contains 4-arylcoumarins, 4-arylchromanes, dalbergiones, and dalbergiquinols [1]. The neoflavonoids were reported to display a variety of pharmacological activities, for example anti-osteoporosis [2], anti-inflammatory [3], anti-tumor [4], anti-androgen [5] and cardioprotective effects [6-9]. D. melanoxylon belongs to the family Leguminosae and subfamily Papilionaidae, is a heavily branched deciduous tree [10]. It has a wide range of occurrence in sub-Saharan Africa [11]. D. melanoxylon have been used for treating abdominal pain, gonorrhoea, joint pain and bronchitis [12-13].

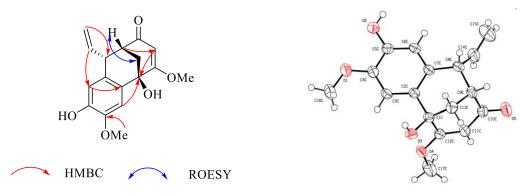

2. Present Study

The powdered heartwood of D. melanoxylon (50.0 kg) was extracted by infusion with 70% ethanol at roomtemperature (24h, 3 times). Next, the extraction was filtered and the solvent was evaporated under reduced pressure in a rotary evaporation equipment (Buchi, Switzerland). And then, the obtained extract (13.9 kg) was dissolved in distilled H₂O and successively partitioned with CH₂Cl₂, EtOAc and *n*-BuOH. The CH₂Cl₂ portion (8.5 kg) was subjected to silica gel CC (column chromatography) using petroleum ether-EtOAc (from 50:1 to 1:5, v/v) as the elution to yield 22 fractions (Frs.1-Frs.22). Frs.7 (447.4 g) was purified by silica gel column to give six fractions (Frs.7.A-Frs.7.F), through gradient elution with changing ratios of CH₂Cl₂-MeOH from 100:1-10:1(ν/ν). Frs.7.C (196.9g) was purified by Sephadex LH-20 CC eluted with CH₂Cl₂-MeOH (1:1, v/v) to yield three fractions (Frs.7.C.1-Frs.7.C.3). Frs.7.C.2 (7.5 g) was separated by silica gel column (petroleum ether-acetone, 20:1-5:1) to yield 3 (1.7 g). Frs.7.C.3 (7.5 g) was separated by silica gel column (petroleum ether-acetone, 20:1-2:1) to yield 4 (11.2 g). Frs.9 (96.9 g) was fractionated via silica gel CC eluted with CH₂Cl₂-MeOH (from 400:1-10:1, v/v) to yield three fractions (Frs.9.A-Frs.9.C). Frs.9.B (45.8 g) was further fractionated via silica gel CC eluted with petroleum ether-acetone (from 10:1-2:1, v/v) to obtain 5 (16.1 mg). Frs.13 (227.6 g) was fractionated via silica gel CC eluted with CH₂Cl₂-MeOH (from 100:1-10:1, v/v) to yield three fractions (Frs.13.A-Frs.13.C). Frs.13.B (89.3 g) was further fractionated via silica gel CC eluted with CH₂Cl₂-MeOH (from 200:1-100:1, v/v) to obtain 2 (20.1 g). Frs.14 (303.7 g) was loaded ODS column chromatography with MeOH-H₂O gradient elution to give (from 30:70 to 50:50, v/v) to yield 9 fractions (Frs.14.A-Frs.14.I). Frs.14.C (5.4 g) was further fractionated via silica gel CC eluted with CH₂Cl₂-MeOH (from 1000:1-100:1, v/v) to obtain 6 (56.8 mg). Frs.14.I (23.6 g) was fractionated via silica gel CC eluted with CH₂Cl₂-MeOH (from 100:1-10:1, v/v) to yield 4 fractions (Frs.14.I.1-Frs.14.I.4). Frs.14.I.2 (953.5 mg) was further fractionated via silica gel CC eluted with CH₂Cl₂-MeOH (from 1000:1-200:1, v/v) to obtain 7 (58.2 mg).Frs.15 (83.2 g) was loaded ODS column chromatography with MeOH-H₂O gradient elution to give (from 30:70 to 50:50, v/v) to yield 5 fractions (Frs.15.A-Frs.15.E). Frs.15.A(1.8 g) was purified by Sephadex LH-20 CC eluted with CH₂Cl₂-MeOH (1:1, ν/ν) to yield 2 fractions (Frs.15.A.1-Frs.15.A.2). Frs.15.A.1 (452.7 mg) was separated by preparative HPLC eluted with MeOH-H₂O (32:68, v/v) to yield 1 (20.5 mg, $t_{\rm R}$ = 36.4 min).

(*1R*, 8*R*, 9*R*)-*pterolinuse K* (1): Colorless crystals (MeOH); $[\alpha]_D^{24} = +22.7$ (*c* = 0.1, MeOH). UV (MeOH) λ_{max} : 290, 250, 240 nm, IR (KBr) v_{max} 3372.2, 1660.1, 1453.1, 1452.9, 1413.3 cm⁻¹. CD (MeOH) λ_{max} ($\Delta\epsilon$) 234 (+1.41), 283 (+1.34); HR-ESI-MS *m*/*z* 303.1224 ([M+H]⁺ calcd for C₁₇H₁₉O₅,

303.1227). ¹H-NMR (DMSO- d_6 , 600 MHz) and ¹³C-NMR (DMSO- d_6 , 150 MHz): see Table S1 in supporting information.

In our ongoing project of the investigation on the chemical constituents and bioactive of *D. melanoxylon*, one new neoflavonoid (1) and six known neoflavonoids (2-7) were obtained from the heartwood of *D. melanoxylon* (Figure 1).


Figure 1. Structures of compounds 1-7

Compound 1 was a colorless crystals, with a molecular formula of $C_{17}H_{18}O_5$ as deduced from the (+)-HR-ESI-MS m/z 303.1224 ([M+H]⁺ calcd for C₁₇H₁₉O₅, 303.1227), inferring 9 degree of unsaturation. The ¹H-NMR spectrum exhibited the signals (Table 1) of two hydroxyls at $\delta_{\rm H}$ 5.89 (1H, s, 1-OH) and 8.93 (1H, s, 5-OH), two methoxy groups at $\delta_{\rm H}$ 3.62 (3H, s, 12-OCH₃) and 3.73 (3H, s, 4-OCH₃), two aromatic protons at $\delta_{\rm H}$ 7.15 (1H, s, H-3) and 6.51 (1H, s, H-6), four olefinic protons at $\delta_{\rm H}$ 5.14 (1H, s, H-11), 5.35 (1H, ddd, J = 16.9, 10.1, 8.1 Hz, H-14), 5.20 (1H, d, J = 16.9 Hz, H-15a) and 5.14 (2H, m, H-15b), two methines at $\delta_{\rm H}$ 3.68 (1H, t, J = 8.1 Hz, H-8) and 2.83 (1H, s, H-9), diastereotopic methylene protons at $\delta_{\rm H}$ 2.44 (1H, d, J = 12.0 Hz, H-13a) and 2.15 (1H, d, J = 12.0 Hz, H-13b). Inspection of its ¹³C-NMR spectra exhibited 17 carbon resonances assignable to two methoxy groups at $\delta_{\rm C}$ 56.9 (4-OCH₃) and 56.2 (12-OCH₃), six aromatic carbons at $\delta_{\rm C}$ 132.0 (C-2), 109.2 (C-3), 146.4 (C-4), 146.3 (C-5), 115.8 (C-6) and 127.7 (C-7), two double bonds at $\delta_{\rm C}$ 100.6 (C-11), 183.3 (C-12), 140.0 (C-14) and 117.2 (C-15), four methines at $\delta_{\rm C}$ 69.5 (C-1), 45.0 (C-8), 48.8 (C-9) and 40.7 (C-13), one conjugated ketone at $\delta_{\rm C}$ 197.5 (C-10) (Table 1). These data were similar with those of (1S, 8R, 9S)-1, 5-dihydroxy-4,12-dimethoxy-8-vinyl-tricyclo[7.3.1.0^{2,7}]trideca-2,4,6,11 tetraen-10-one skeleton [14]. The HMBC correlation of H-13a ($\delta_{\rm H}$ 2.44) and H-13b ($\delta_{\rm H}$ 2.15) with C-2 ($\delta_{\rm C}$ 132.0), C-8 ($\delta_{\rm C}$ 45.0), C-10 ($\delta_{\rm C}$ 197.5) and C-12 ($\delta_{\rm C}$ 183.3) have confirmed the methylene was linked to C-1 ($\delta_{\rm C}$ 69.5) and C-9 ($\delta_{\rm C}$ 48.8), two hydroxy groups were attached to C-1 and C-5, respectively. In HMBC spectrum, cross-peaks for 1-OH ($\delta_{\rm H}$ 5.89)/C-1 ($\delta_{\rm C}$ 69.5), C-2 ($\delta_{\rm C}$ 132.0), C-12 ($\delta_{\rm C}$ 183.3) and C-13 ($\delta_{\rm C}$ 40.7), 5-OH ($\delta_{\rm H}$ 5.59)/C-5 ($\delta_{\rm C}$ 146.3) and C-6 (δ_{C} 115.8). 4-OCH₃ (δ_{H} 3.73) was located at C-4 (δ_{C} 146.4) and 12-OCH₃ (δ_{H} 3.62) was located at C-12 ($\delta_{\rm C}$ 183.3) observed in HMBC and HSQC. The relative configuration was assigned from the ROESY spectrum, in which H-13 [$\delta_{\rm H}$ 3.68 (1H, t, J = 8.1 Hz)] showed correlation with H-8 suggesting that H-13 [$\delta_{\rm H}$ 2.44 (1H, d, J = 12.0 Hz), 2.15 (1H, d, J = 12.0 Hz)] was on the same side with H-8 ($\delta_{\rm H}$ 3.51) (Figure 2). The absolute configuration of compound 1 was also determined to be (1R, 8R, 9R)-pterolinuse K by X-ray crystallography (CCDC: 2052275) (Figure 3).

The six known neoflavonoids (2-7) were identified as (*S*)-3'-hydroxy-4,4'-dimethoxydalbergione (2)[15], (*S*)-3',4'dihydroxy-4-methoxydalbergione (3)[16], (*S*)-4'-hydroxy-4-methoxydalbergione (4)[17],

Neoflavonoids from Dalbergia melanoxylon

(*S*)-3'-hydroxy-4-methoxydalbergione (5)[16], (*S*)-4-methoxydalbergione (6)[17], melanoxoin (7)[18], by comparing the observed and reported NMR data.

Figure 2. Selected HMBC and ROESY **Figure 3.** ORTEP drawing of compound **1** correlations of correlations of compound **1**

The isolates **1-7** were assessed anti-inflammatory properties against lipopolysaccharide (LPS)-activated RAW 264.7 cells in *vitro* assay. Among all tested compounds, **3** and **6** showed moderate anti-inflammatory activity with IC₅₀ values 23.14 \pm 0.30 and 19.46 \pm 1.02 μ M, respectively (Table 1). Compounds **3** and **6** have similar chemical structure and **6** showed better activity, which suggested that the hydroxy group in C-3' and C-4' might weaken the anti-inflammatory activity of neoflavonoids.

Compound	Cytotoxicity	Anti-inflammatory activity	
quercetin	>100	17.92 ± 0.92	
1	>100	>100	
2	26.09 ± 1.99	-	
3	>100	23.14±0.30	
4	22.24 ± 2.30	-	
5	>100	>100	
6	>100	19.46 ± 1.02	
7	98.48 ± 20.85	89.31 ± 7.51	

Table 1. Cytotoxicities and anti-inflammatory activities (IC₅₀ in µM) of compounds

Table 2. Anti-tumor activities (IC₅₀ in μ M) of compounds

Compound	Caco-2	MDA-MB-468	MDA-MB-231	CT26
5-FU	190.32 ± 24.13	149.09 ± 21.02	48.84 ± 14.84	61.89 ± 16.35
1	>100	>100	>100	>100
2	15.14 ± 1.13	40.90 ± 7.56	7.54 ± 1.50	23.10 ± 1.20
3	26.46 ± 3.76	37.52 ± 1.70	16.60 ± 2.98	52.38 ± 16.51
4	11.42 ± 1.08	23.66 ± 1.58	7.23 ± 0.40	24.43 ± 0.90
5	>100	>100	>100	>100
6	32.92 ± 2.34	89.00 ± 10.90	21.88 ± 0.63	>100
7	46.89 ± 2.54	22.14 ± 1.07	27.31 ± 1.10	33.83 ± 0.94

All isolated neoflavonoids (1-7) from D. melanoxylon were evaluated for their cytotoxic activities on

Caco-2, MDA-MB-231, MDA-MB-468 and CT26 cell lines by MTT assays. The results revealed that compound **2** and **4** showd potent cytotoxic activities against four above cell lines with IC₅₀ values ranging from 7.23 ± 0.40 to $40.90 \pm 7.56 \mu$ M, compound **3** and **7** displayed moderate cytotoxic activities against four above cell lines with IC₅₀ values ranging from 16.60 ± 2.98 to $52.38 \pm 16.51 \mu$ M (Table 2), which suggested that the hydroxy group might enhance the anti-cancer activity of neoflavonoids. Compounds **2-6** has similar chemical structure but **5** showed no anti-cancer activity. It indicated the hydroxy group in C-3' of **5** might weaken anti-cancer activity.

Acknowledgments

The work was partially supported by the National Natural Science Foundation of China (81660676 and 81360629), the National Key R&D Program of China (2018YFC1706102) and the Natural Science Foundation of Jiangxi Province (20202BABL216074).

Supporting Information

Supporting Information accompanies this paper on <u>http://www.acgpubs.org/journal/records</u>

<u>-of-natural-products</u> **ORCID** Zhangjun Xu: <u>0000-0002-8430-0806</u> Yang Liu: <u>0000-0002-0959-3004</u> Xiaowei Meng: <u>0000-0003-2956-8460</u> Li Yang: <u>0000-0001-9098-694X</u> Feng Shao: <u>0000-0001-9098-694X</u> Feng Shao: <u>0000-0001-5623-9000</u> Lanying Chen: <u>0000-0001-8115-8114</u>

References

- M. M. Garazd, Y. L. Garazd and V. P. Khilya (2003). Neoflavones.1. Natural distribution and spectral and biological properties, *Chem. Nat. Compd+.* 39, 54 - 121.
- P. Kumar, P. Kushwaha, V. Khedgikar, J. Gautam, D. Choudhary, D. Singh, R. Trivedi and R. Maurya (2014).
 Neoflavonoids as potential osteogenic agents from *Dalbergia sissoo* heartwood, *Bioorg. Med. Chem. Lett.* 24, 2664 2668.
- [3] C. Lee, J. W. Lee, Q. Jin, D. S. Jang, S. Lee, D. Lee, J. T. Hong, Y. Kim, M. K. Lee and B. Y. Hwang (2013). Inhibitory constituents of the heartwood of *Dalbergia odorifera* on nitric oxide production in RAW 264.7 macrophages, *Bioorg. Med. Chem. Lett.* 23, 4263 - 4266.
- [4] K. R. Park, H. M. Yun, T. H. Quang, H. Oh, D. S. Lee, Q. S. Auh and E. C. Kim (2016). 4-Methoxydalbergione suppresses growth and induces apoptosis in human osteosarcoma cells *in vitro* and *in vivo* xenograft model through down-regulation of the JAK2/STAT3 pathway, *Oncotarget* 7, 6960 - 6971.

Neoflavonoids from Dalbergia melanoxylon

- [5] M. Kuroyanagi, A. Ueno, Y. Hirayama, Y. Hirayama, T. Gokita, T. Isiiimaru, S. Kameyama, T. Yanagawa, M. Satake and S. Satake (1996). Anti-androgen active constituents from *Dalbergia cochinchinensis* PIERRE, *Nat. Medicin.* 50, 408 412.
- [6] Y. Liu, N. Zhang, J. W. He, L. Y. Chen, L. Yang, X. W. Meng, F. Shao and R. H. Liu (2021), Two new compounds from the heartwood of *Dalbergia melanoxylon* and their protective effect on hypoxia/reoxygenation injury in H9c2, *Nat. Prod. Commun.* 16, 1-7.
- [7] X. X. Lai, N. Zhang, L. Y. Chen, Y. Y. Luo, B. Y. Shou, X. X. Xie and R. H. Liu (2020), Latifolin protects against myocardial infarction by alleviating myocardial inflammatory via the HIF-1 α /NF- κ B/IL-6 pathway, *Pharm. Biol.* 58, 1156 - 1166.
- [8] N. Zhang, B. Y. Shou, L. Y. Chen, X. X. Lai, Y. Y. Luo, X. W. Meng and R. H. Liu (2020), Cardioprotective effects of latifolin against doxorubicin-induced cardiotoxicity by macrophage polarization in mice, *J. Cardiovasc. Pharmacol.* **75**, 564 - 572.
- [9] Y. Liu, J. C. Shu, M. F. Wang, Z. J. Xu, L. Yang, X. W. Meng, W. B. Duan, N. Zhang, F. Shao, R. H. Liu and L. Y. Chen (2021), Melanoxylonin A-G, neoflavonoids from the heartwood of *Dalbergia melanoxylon* and their cardioprotective effects, *Phytochemistry* 189, 112845.
- [10] M. Jenkins, S. Oldfield and T. Aylett (2002). International trade in African blackwood, *Cambridge, UK: Fauna* and Flora International.
- [11] R. E. Malimbwi, E. J. Luoga, O. Hofstad, A. G. Mugasha and J. S. Valen (2000). Prevalence and standing volume of *Dalbergia melanoxylon* in coastal and inland sites of Southern Tanzania, *J. Trop. For. Sci.* **12**, 336 347.
- [12] P. Mutai, M. Heydenreich, G. Thoithi, G. Mugumbate, K. Chibale and A. Yenesew (2013), 3-Hydroxyisoflavanones from the stem bark of *Dalbergia melanoxylon*: Isolation, antimycobacterial evaluation and molecular docking studies, *Phytochem. Lett.* 6, 671 - 675.
- [13] P. G. Kareru, A. N. Gachanja, J. M. Keriko and G. M. Kenji, (2008). Antimicrobial activity of some medicinal plants used by herbalists in Eastern province, Kenya, *Afr. J. Trad. CAM.* **5**, 51 55.
- [14] M. F. Wang, G. Q. Ma, F. Shao, R. H. Liu, L. Y. Chen, Y. Liu, L. Yang and X. W. Meng (2020). Neoflavonoids from the heartwood of *Dalbergia melanoxylon*, *Nat. Prod. Res.* 16, 1 - 7. DOI: 10.1080/14786419.2020.1800692
- [15] S. F. Wu, F. R. Chang, S. Y. Wang, T. L. Hwang, C. L. Lee, S. L. Chen, C. C. Wu and Y. C. Wu (2011). Anti-inflammatory and cytotoxic neoflavonoids and benzofurans from *Pterocarpus santalinus*, *J. Nat. Prod.* 74, 989 - 996.
- [16] S. P. Shrestha, Y. Narukawa and T. Takeda (2007). Chemical constituents of Nepalese propolis: isolation of new dalbergiones and related compounds, J. Nat. Med. 61, 73 - 76.
- [17] W. B. Eyton, W. D. Ollis, I. O. Sutherland, O. R. Gottlieb, M. T. Magalhaes and L. M. Jackman (1965). The neoflavanoid group of natural products-I: Dalbegiones-A new class of quinones, *Tetrahedron* 21, 2683 - 2696.
- [18] V. Pathak, O. Shirota, S. Sekita, Y. Hirayama, Y Hakamata, T. Hayashi, T. Yanagawa and M. Satake (1997).
 Antiandrogenic phenolic constituents from *Dalbergiaco chinchinensis*, *Phytochemistry* 46, 1219 1223.

© 2021 ACG Publications