Polyketides and Alkaloids from the Fungus Penicillium sp.

Yifang Chen, Ying Lu, Jianyong Zhao and Qian Chen*

The First People's Hospital of Linping District, Hangzhou, Zhejiang 311100, China

(Received October 03, 2022; Revised October 18, 2022; Accepted October 20, 2022)

Abstract: The marine-derived fungus SCZ-1 was cultured on rice solid medium. The fermented materials was extracted using ethyl acetate to afford an extract, which was separated by repeated column chromatography to afford three polyketides and five alkaloids, including 2 new polyketides (1 and 2). The known compounds were identified to be penipyrol A (3), cyclopenin (4), cyclopenol (5), terretrione D (6), viridicatol (7), and viridicatin (8). The structures of 1 and 2 were determined by extensive analyses of spectroscopic data (1D and 2D NMR, and HRESIMS). The absolute configuration of 2 was assigned by comparison of the experimental ECD spectrum with calculated ECD spectrum. Compound 1, bearing a two-carbon side chain at C-2, is seldom found among natural isocoumarins. All metabolites were screened for their inhibitory effects toward α-glucosidase, only compound 8 showed weak activity with an IC50 value of 548 μM.

Keywords: marine-derived fungus; Penicillium sp.; new polyketides. © 2022 ACG Publications. All rights reserved.

1. Plant Source

The fungal strain SCZ 4-1 was isolated from sediments collected from the Mirs Bay of Shenzhen. The strain was identified as Penicillium sp. by analyses of the ITS region of the rDNA sequence with those of a standard record. The ITS sequence has been sent to the GenBank (http://www.ncbi.nlm.nih.gov) with the accession number KY445779.

2. Previous Studies

In recent years, the metabolites of fungi have been deeply excavated by natural product chemists, leading to the discovery of thousands of molecules with various structures and profound activity [1-6]. The Penicillium is an outstanding member which have been proved to be productive. Previous chemical investigation of Penicillium strains led to identification of meroterpenoids [7-9], alkaloids [10, 11], polyketides [12, 13], sesquiterpenes and diterpenes [14-17].

In our study, we found that the 1H NMR data of the fermented materials of the marine-derived Penicillium sp. SCZ4-1 showed resonances that were probable for alkaloids. Subsequent chromatographic separation of the EtOAc extract led to the isolation of eight compounds including three polyketides (1–3) and five alkaloids (4–8). Herein, we reported the isolation and structural identification of these metabolites.

3. Present Study

The strain was cultured on solid rice medium (80 g rice and 90 mL water) in 20 erlenmeyer
flasks (500 mL). The fermentation was carried out for 4 weeks under static conditions at 25 °C. The fermented materials were extracted with EtOAc (1000 mL) for three times and afforded an EtOAc extract (2.1 g), which was separated on a silica gel with petroleum ether/EtOAc (95:5 to 50:50) as eluent to give five fractions (Fr.I–Fr.V). Fra. II was chromatographed over ODS silica gel (MeOH/H2O = 20:80 to 100:0) to give five fractions (Fr.IIa–Fr.IIe). Fr.IIb was purified by HPLC (a YMC-pack ODS-A column, 2 mL/min) with MeCN/H2O (50:50) as eluent to give 5 (8.5 mg), 8 (1.8 mg), and 7 (2.3 mg). Fr.IIc was purified on HPLC using 60% acetonitrile/water as eluent to give 2 (2.7 mg), 4 (5.7 mg), and 6 (2.3 mg). Fr.III was applied to the ODS gel (MeOH/H2O = 20:80 to 100:0) to give five fractions (Fr.IIIa–Fr.IIIe). Fr.IIIb was separated by HPLC (MeCN/H2O = 45:55) to yield 1 (1.5 mg) and 3 (2.5 mg).

Peniketide A (1): Light yellow oil, UV (MeOH) λmax (log ε) 239 (4.36), 244 (4.39) nm; 1H NMR and 13C NMR data, see Table 1; HRESIMS m/z: 237.0388 [M + H]+ (calcd. for C11H10O6, 237.0394).

Methyl ester of penipyrol A (2): Colorless oil; [α]D25 −34 (c = 0.1, CH3OH); UV (MeOH) λmax 291 (3.77) nm; ECD (c 7.1 × 10−4 M, MeOH) λmax (Δε) 314 (−0.49), 254 (−1.87), 209 (+1.27) nm; 1H and 13C NMR data, Table 1; HRESIMS m/z 275.1278 [M − H]− (calcd. for C10H19O6, 275.1289).

Figure 1. Structures of compounds 1–8 from the strain Penicillium sp.

Compound 1 had the molecular formula of C11H8O6 as assigned by the HRESIMS (237.0388 [M + H]+, calcd. for C11H10O6, 237.0394), indicating eight sites of unsaturation. The 1H NMR spectrum displayed the signals for three aromatic protons [δH 6.47 (1H, br s), 6.34 (2H, br s)] and two protons for a methylene [δH 3.52 (2H, br s)]. The 13C NMR exhibited 11 carbon resonances in total, which were attributed by HSQC spectrum to three sp2 methine (δC 107.8, 104.0, 102.9), seven sp2 non-protonated carbons (δC 173.0, 167.5, 167.3, 164.6, 152.6, 141.0, 99.8), and a sp3 methylene carbon (δC 40.3). The above-mentioned data indicated that the structure of 1 contained a benzene ring, a carboxyl carbon, an ester carbon, and two carbons for a double bond. As the unsaturated groups accounted for seven of the eight sites of unsaturation, the remaining one required the presence of an additional ring in the structure. These data were very similar to those of a reported natural analog (1a) except for the presence of a methylene (δH 3.52; δC 40.3) and an additional carbonyl carbon (δC 173.0) instead of the allylic methyl (δH 2.22; δC 19.0) in 1a [18], suggesting that the methyl in 1a was replaced by an acetic acid moiety in 1. The deduced structure was further confirmed by 2D NMR analyses (Figure 2) and MS data, especially the HMBC correlations from methylene protons H2−11 (δH 3.52) to C-2 (δC 152.6), and the carboxylic carbon C-12 (δC 173.0) and from the olefinic proton H-1 (δH 6.47) to C-2, C-11 (δC 40.3), and C-12. Thus, the structure of 1 was determined as 7,9-dihydroxy-
3-acetic acid isocoumarin, interestingly, isocoumarin bearing a two-carbon side chain at C-2 was rarely found in nature. Compound 1 was named peniketide A.

Table 1. 1H (400 Hz) and 13C NMR (100 Hz) Data of 1–3 and 1a in methanol-d_4 (δ in ppm)

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>1a</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.47, br s</td>
<td>107.8</td>
<td>6.47</td>
<td>102.1</td>
</tr>
<tr>
<td>2</td>
<td>152.6</td>
<td>155.7</td>
<td>165.2</td>
<td>165.1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>124.6</td>
<td>124.4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>167.3</td>
<td>166.9</td>
<td>7.32, d (6.9)</td>
<td>142.4</td>
</tr>
<tr>
<td>5</td>
<td>99.8</td>
<td>99.8</td>
<td>6.26, d (6.9)</td>
<td>106.7</td>
</tr>
<tr>
<td>6</td>
<td>164.6</td>
<td>165.0</td>
<td></td>
<td>159.0</td>
</tr>
<tr>
<td>7</td>
<td>6.34, br s</td>
<td>102.9</td>
<td>6.30</td>
<td>103.8</td>
</tr>
<tr>
<td>8</td>
<td>167.5</td>
<td>167.0</td>
<td>7.04, d (15.8)</td>
<td>138.7</td>
</tr>
<tr>
<td>9</td>
<td>6.34, br s</td>
<td>104.0</td>
<td>6.33</td>
<td>105.9</td>
</tr>
<tr>
<td>10</td>
<td>141.0</td>
<td>141.8</td>
<td>5.75, d (9.9)</td>
<td>136.0</td>
</tr>
<tr>
<td>11</td>
<td>3.52, br s</td>
<td>40.3</td>
<td>2.22</td>
<td>19.0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1.83, m</td>
<td>27.1</td>
<td>1.83, m</td>
</tr>
<tr>
<td>13</td>
<td>0.93, t (7.4)</td>
<td>11.9</td>
<td></td>
<td>0.94, t (7.4)</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>175.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.88, s</td>
<td>12.7</td>
<td>1.89, s</td>
<td>12.7</td>
</tr>
<tr>
<td>16</td>
<td>2.06, s</td>
<td>16.6</td>
<td>2.06, s</td>
<td>16.7</td>
</tr>
<tr>
<td>OCH$_3$</td>
<td></td>
<td>3.70, s</td>
<td></td>
<td>52.4</td>
</tr>
</tbody>
</table>

Figure 2. Key HMBC (→), COSY (•→), NOESY (→→→) correlations of 1 and 2

The molecular formula of compound 2 was assigned as C$_{16}$H$_{20}$O$_4$ on the basis of the HRESIMS (275.1287 [M – H]$^-$, calcd. for C$_{16}$H$_{19}$O$_4$, 275.1289) and NMR data (Table 1), requiring seven degrees of unsaturation. The 1H NMR spectrum showed the resonances for two olefinic methyls (δ$_H$ 2.06 and 1.89), a triplet of methyl (δ$_H$ 0.94), a singlet of methoxy group (δ$_H$ 3.70), five olefinic protons (δ$_H$ 7.30, 7.04, 6.25, 6.23, 5.78) including two for a trans double bond [δ$_H$ 7.04 (15.8 Hz), 6.23 (15.8 Hz)], and three aliphatic protons (δ$_H$ 3.34, 1.83, 1.61), while the 13C NMR and HSQC spectra presented 15 carbon resonances totally, involving eight olefinic carbons (δ$_C$ 165.2, 142.4, 138.7, 137.0, 136.0, 124.6, 106.7, 119.6), two carbonyl carbons (δ$_C$ 175.7, 159.0), four methyls (δ$_C$ 16.6, 12.7, 11.9), a methoxy (δ$_C$ 52.4), one methylene (δ$_C$ 27.1), one methine (δ$_C$ 48.0). The aforementioned data were similar to the co-isolated know compound penipyrol A (3) with only distinction owing to the presence of a methoxy (δ$_H$ 3.70, δ$_C$ 52.4), suggesting 2 was the methyl derivative of 3 [19]. The speculated structure of 2 was confirmed by 2D NMR analyses. Specifically, the HMBC correlation from the methoxy protons to the carboxyl carbon at δ$_C$ 175.7 established the methyl ester moiety. The geometries of Δ7 and Δ10 in 2 were both assigned as E-configuration by NOESY experiments (Figure 2) and by comparison of its NMR data with those of 3. The absolute configuration of 2 was
Polyketides and alkaloids from the fungus *Penicillium* sp. determined by comparison of experimental ECD spectrum with the calculated ECD spectrum, which led to the assignment of the 11R configuration for 2 (Figure 3).

![Figure 3. Experimental ECD spectrum of 2 in MeOH and the calculated ECD spectra of R-2 at the b3lyp/6-31+g(d,p) level](image)

Besides, the other known compounds were elucidated to be penipyrol A (3) [19], cyclopenin (4) [20], cyclopenol (5) [20], teretretrione D (6) [21], viridicatol (7) [22], viridicatin (8) [20], by comparing their 1H and 13C NMR data with reported data in the literature.

All the isolated metabolites were tested for the activity toward the α-glucosidase according to the literature [23], only compound 8 showed weak inhibitory effect with an IC50 value of 548 μM (the positive control acarbose: 217 μM).

Supporting Information

ORCID

Yifang Chen: 0000-0003-3120-7218
Ying Lu: 0000-0002-4385-0529
Jianyong Zhao: 0000-0002-1379-0940
Qian Chen: 0000-0003-1687-5090

References

