

Rec. Nat. Prod. 17:2 (2023) 382-387

records of natural products

Todasinoid A, a New Eremophilane-type Sesquiterpene from the Plant *Toddalia asiatica*

Lijing Cai 💿, Mengying Zhang 💿, Jie He 💿 and Tingting Lin 🍩 *

Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, People's Republic of China

(Received June 09, 2022; Revised August 15, 2022; Accepted August 23, 2022)

Abstract: A new sesquiterpene, named todasinoid A (1), together with eight known compounds (2–9) were isolated from the roots of *Toddalia asiatica*. The gross structure of todasinoid A were established by analyses of the NMR and HRESIMS data. A comparison of the experimental ECD spectrum of 1 with the calculated ECD spectra for a model compound (1a) resolved the absolute configuration of 1. The known compounds were identified to be bullatantriol (2), aculeatin (3), 6-(3-ethoxy-2-hydroxy-3-methylbutyl)-5,7-dimethoxy-2H-1-benzopyran-2-one (4), *trans*-N-p-coumaroyltyramine (5), feruloyltyramine (6), β -sitosterol (7), sitosterol *D*-glucoside(8), 7*a*-hydroxysitosterol (9) by comparing the NMR data and specific rotations with reported data in literature. Compound 1 is an eremophilane-type sesquiterpenoid containing a mercaptolactate side-chain that is rarely found in nature. Compounds 2, 5, and 9 were isolated from this plant for the first time. Bioassay study revealed that compound 5 exhibited inhibitory effects against α -glucosidase with an IC₅₀ of 320 μ M, being more active than the positive control acarbose.

Keywords: *Toddalia asiatica*; Todasinoid A; sesquiterpenoid; ECD calculation. © 2022 ACG Publications. All rights reserved.

1. Plant Source

The roots of *Toddalia asiatica* were collected in October 2012 in Yunnan Province, P. R. China. The sample of roots was identified by Prof. You-Kai Xu of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. A voucher specimen (accession number: FLZX201210) was deposited at the School of Pharmaceutical Sciences, Sun Yat-sen University.

2. Previous Studies

The plant *T. asiatica* (L.) Lam. (Rutaceae) has a wide distribution in south China. In Traditional Chinese Medicine (TCM), the roots of *T. asiatica* were used to treat pyogenic infections,

The article was published by ACG Publications <u>http://www.acgpubs.org/journal/records-of-natural-products</u> March-April 2023 EISSN:1307-6167 DOI: <u>http://doi.org/10.25135/rnp.356.2206.2486</u>

Available online: August 30, 2022

^{*} Corresponding author: E-Mail: <u>lintingting 1988@163.com</u>

Cai et al., Rec. Nat. Prod. (2023) 17:2 382-387

dyspepsodynia, and rheumatic arthritis. A recent review revealed that the chemical constituents of the plant were coumarins, alkaloids, terpenoids, some of which exhibited remarkable pharmacological effects, such as anti-inflammatory analgesic, bacteriostatic, and cardiovascular protective effects. [1]. In our previous study of *T. asiatica*, a series of prenylated coumarins and benzophenanthridine alkaloids possessed potent inhibitory effects against phosphodiesterase-4 were reported [2, 3]. In continuing study of the plant, two sesquiterpenes (1 and 2), two isocoumarins (3 and 4), two amides (5 and 6) and three steroids (7–9) were obtained (Figure 1), the α -glucosidase inhibitory effects were tested. Herein, the isolation, structural elucidation, and the α -glucosidase inhibitory effects of compounds 1–9 are described.

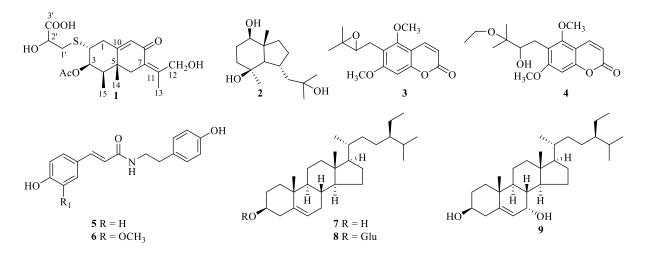


Figure 1. Structures of compounds 1–9 from Toddalia asiatica

3. Present Study

The air-dried powder of the roots of *T. asiatica* (1 kg) was extracted with 95% EtOH (3×10 L) at room temperature (rt) to give 85 g of crude extract. The extract was suspended in H₂O (1 L) and successively partitioned with petroleum ether (PE, 3×1 L) and EtOAc (3×1 L), respectively. The EtOAc extract (63 g) was subjected to MCI gel CC eluted with a MeOH/H₂O gradient ($3:7 \rightarrow 10:0$) to afford four fractions (Fr. I–Fr. IV). Fr. III was subjected to silica gel CC (PE/EtOAc, $3:1 \rightarrow 0:1$) to give four fractions (Fr. IIIa–Fr. IIId). Fr. IIIa was applied to silica gel CC (PE/EtOAc, $10:1 \rightarrow 2:1$) to afford 3, 4, and 7. Fr. IIIc was subjected to silica gel CC (PE/Acetone, $5:1 \rightarrow 1:1$) to yield 5, 6, and 9. Fr. IIId was purified by silica gel CC (CH₂Cl/MeOH, $20:1 \rightarrow 5:1$) to give 1, 2, and 8.

Todasinoid A (1): Colorless oil; $[\alpha]^{25}_{D}$ +59 (*c* 0.15, MeOH); UV (MeOH) λ_{max} (log ε) 251 (4.16), 282 (3.94); ECD (*c* 2.7 × 10⁻⁴ M, MeOH) λ_{max} ($\Delta \varepsilon$) 240 (+7.10), 284 (-5.41); ¹H and ¹³C NMR data, see Table 1; HRESIMS *m*/*z* 435.1445 [M + Na]⁺ (calcd for C₂₀H₂₈O₇SNa⁺, 435.1448); HRESIMS *m*/*z* 413.1635 [M + H]⁺ (calcd. for C₂₀H₂₉O₇S⁺, 413.1629).

Compound **1** had the molecular formula $C_{20}H_{28}O_7S$ as determined by the HRESIMS data, requiring 7 degrees of unsaturation. The ¹H NMR spectrum showed four methyl groups including an acetoxy group (δ 2.08) and an olefinic methyl group (δ_H 1.99), five protons attached to carbons bearing heteroatoms (δ_H 4.89, 4.10, 4.08, 3.99, 3.31), an olefinic proton (δ_H 5.72), and seven alkyl protons. The ¹³C NMR and HSQC spectra revealed the presences of an α,β -unsaturated ketone group (δ_C 190.5, 127.6, 164.4), four methyl carbons (δ_C 11.1, 17.4, 17.9, 20.8), a tetrasubstituted double bond (δ_C 164.4, 145.4), four sp³ methylenes including an hydroxymethyl group (δ_C 61.5), four methines (δ_C 37.9, 44.5, 70.2, 74.8), one sp³ quaternary carbon (δ_C 40.4), and a carboxylic acid group (δ_C 173.9), and an ester carbon (δ_C 169.9). The functional groups above accounted for 5 of the 7

A new eremophilane-type sesquiterpene

degrees of unsaturation, indicating a bicyclic nucleus. The above-mentioned information was similar to that of a reported analogue (3S)-3-acetoxyeremophil-7(11),9(10)-dien-8-one [4], suggestive of an eremophilane-type sesquiterpenoid. The obvious differences were owing to the presence of a hydroxymethyl and three additional carbons in **1** instead of one olefinic methyl in (3S)-3-acetoxyeremophil-7(11),9(10)-dien-8-one.

No.	$\delta_{\rm H,}$ mult. (<i>J</i> in Hz)	$\delta_{\rm C}$, type	No.	$\delta_{\rm H,}$ mult. (J in Hz)	$\delta_{\rm C}$, type
1	β 2.96, d (14.7) α 2.33, d (14.7)	32.3, CH ₂	11		145.4, C
2	3.31, br s	44.4, CH	12	4.10 d (13.1) 3.99 d (13.1)	61.5, CH ₂
3	4.89, br s	74.8, CH	13	1.99, s	17.4, CH ₃
4	2.15, m	37.9, CH	14	1.05, s	17.9, CH ₃
5		40.4, C	15	0.94, d (6.9)	11.1, CH ₃
6	β 2.97, o α 1.98, o	35.7, CH ₂	1′	2.92, m 2.78, dd (13.2, 6.7)	35.7, CH ₂
7		127.6 , C	2'	4.08, m	70.2, CH
8		190.5, C	3'		173.9, C
9	5.72, s	127.4, CH	1''	2.08, s	20.8, CH ₃
10		164.4, C	2''		169.9, C

Table 1. ¹H (400 Hz) and ¹³C NMR (100 Hz) data of compound **1** in DMSO- d_6 (δ in ppm)

The structure of **1** was established by detailed analyses of the 2DNMR data (Figure 2). The COSY relationship established a spin system containing CH₂-1, CH-2, CH-3, CH-4, and CH₃-15. The HMBCs from the olefinic methyl H₃-13 ($\delta_{\rm H}$ 1.99) to C-7 ($\delta_{\rm C}$ 127.6), C-11 ($\delta_{\rm C}$ 145.4), and C-12 ($\delta_{\rm C}$ 61.5) assigned the tetrasubstituted double bond resided at C-7 and C-11 and a hydromethyl group at C-12. Additional HMBCs from H₂-6 ($\delta_{\rm H}$ 2.96, 1.98) to C-7, C-8 ($\delta_{\rm C}$ 190.5), C-10 ($\delta_{\rm C}$ 164.4), and C-11 and from H-9 ($\delta_{\rm H}$ 5.72) to C-8 located the α,β -unsaturated ketone group at C-8, C-9 ($\delta_{\rm C}$ 127.4), C-10. The acetoxy group ($\delta_{\rm H}$ 2.08; $\delta_{\rm C}$ 20.8, 169.9) was attached to C-3 ($\delta_{\rm C}$ 74.8) by HMBC correlations from H-3 ($\delta_{\rm H}$ 4.89) to the carbonyl carbon of the acetyl group ($\delta_{\rm C}$ 169.9). Thus, the gross structure of **1** was established except for the substituent group bonded to C-2.

The remaining groups including an oxymethine (δ_H 4.08, δ_C 70.2), a methylene (δ_H 2.92, 2.78; δ_C 35.7), and a carboxylic acid group (δ_C 173.9) were assembled to a 2-hydroxypropanoic acid unit by the ¹H-¹H COSY correlations between H₂-1' (δ_H 2.92, 2.78) with H-2' (δ_H 4.08) and HMBCs from H₂-1' and H-2' to the carboxylic acid carbon C-3' (δ_C 173.9). Based on the molecular formula of **1**, the substituent group at C-2 has a molecular formula of C₃H₅O₃S, bearing a sulfur atom. Thus, the methine C-2 (δ_C 44.4) of the 2-hydroxypropanoic acid unit should be connected to a sulfur atom to form a mercaptolactate side-chain, which was attached to C-2 of the eremophilane nucleus by HMBC from H-1' to C-2. Besides, the mercaptolactate side-chain was confirmed by comparing its chemical shifts with those of the mercaptolactate side-chain in sumalarin A and B [5], whose structures were confirmed by X-ray analysis.

Cai et al., Rec. Nat. Prod. (2023) 17:2 382-387

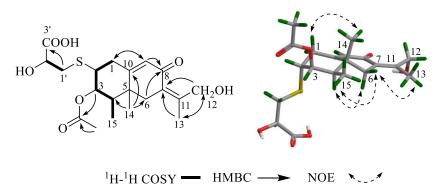


Figure 2. Key ¹H-¹H COSY, HMBC, and NOE correlations of 1

The relative configuration of **1** was assigned by NOESY experiment in association with *J* values. In the NOESY spectrum (Figure 2), the strong correlations between H₃-14 ($\delta_{\rm H}$ 1.05) and H-1 β ($\delta_{\rm H}$ 2.96), H₃-1" ($\delta_{\rm H}$ 2.08), H-6 β and from H-4 ($\delta_{\rm H}$ 2.15) to H-6 α ($\delta_{\rm H}$ 1.98) and the small coupling constants of *J*_{2,3} ($\delta_{\rm H}$ 3.31, br s, H-2) and *J*_{3,4} ($\delta_{\rm H}$ 4.89, br s, H-3) clarified that the bicyclic nucleus adopted a half-chair–chair conformation, and H₃-14, H₃-15 and the acetoxy group were β -orientated, while the mercaptolactate side-chain was α -orientated. The strong NOE correlations between H₃-13 ($\delta_{\rm H}$ 1.99) and H-6 β ($\delta_{\rm H}$ 2.97) indicated that the double bond Δ^{13} had a *Z* configuration. As for the absolute configuration of **1**, the ECD calculation of the model compounds 2*R*, 3*R*, 4*R*, 5*R*-**1a** and 2*S*, 3*S*, 4*S*, 5*S*-**1a** were carried out using b3lyp/6-31+g(d,p) optimized geometries at the b3lyp/6-31+g(d,p) level in methanol. The experimental ECD spectrum of **1** showed an ECD curve similar to that of **1a** (Figure 3), suggesting that **1** had a 2*R*, 3*R*, 4*R*, 5*R*-configuration. Thus, the structure of **1** was determined as depicted and was named todasinoid A. The mercaptolactate side-chain was rarely found in natural product. Biogenetically, the mercaptolactate unit may derive from cysteine by oxidation [6].

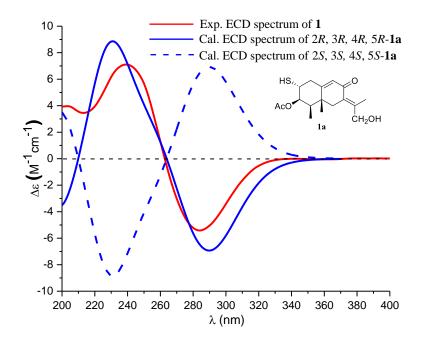


Figure 3. Experimental spectrum of 1 and calculated ECD spectra of 1a in MeOH

A new eremophilane-type sesquiterpene

Additionally, the known compounds 2–9 were identified to be bullatantriol (2) [7], aculeatin (3) [8], 6-(3-ethoxy-2-hydroxy-3-methylbutyl)-5,7-dimethoxy-2H-1-benzopyran-2-one (4) [8], *trans*-N-p-coumaroyltyramine (5) [9], feruloyltyramine (6) [10], β -sitosterol (7) [11], sitosterol *D*-glucoside (8) [12], 7 α -hydroxysitosterol (9) [13] by comparing their NMR data with those in the literature.

The isolated compounds were evaluated for their inhibitory effect toward the α -glucosidase activity assay [14] as results, compound **5** exhibited inhibitory effects against α -glucosidase with an IC₅₀ value of 320 μ M, being more active than the positive control acarbose (670 μ M).

Supporting Information

Supporting Information accompanies this paper on <u>http://www.acgpubs.org/journal/records-of-natural-products</u>

ORCID 💷

Lijing Cai: 0000-0002-6621-7275 Mengying Zhang: 0000-0002-6487-6680 Jie He: 0000-0001-8510-2409 Tingting Lin: 0000-0002-5183-2267

References

- [1] Z. Zeng, R. Tian, J. Feng, N.-a. Yang and L. Yuan (2021). A systematic review on traditional medicine Toddalia asiatica (L.) Lam.: Chemistry and medicinal potential, *Saudi Pharm J.* **29**, 781-798.
- [2] T. T. Lin, Y. Y. Huang, G. H. Tang, Z. B. Cheng, X. Liu, H. B. Luo and S. Yin (2014). Prenylated coumarins: natural phosphodiesterase-4 inhibitors from *Toddalia asiatica*, *J. Nat. Prod.* **77**, 955-962.
- [3] T.-T. Lin and G. Chen (2020). A new sesquiterpene and known alkaloids from *Toddalia asiatica* and their inhibitions against phosphodiesterase-4, *Rec. Nat. Prod.* **14**, 207-212.
- [4] D. Sørensen, A. Raditsis, L. A. Trimble, B. A. Blackwell, M. W. Sumarah and J. D. Miller (2007). Isolation and structure elucidation by LC-MS-SPE/NMR: PR toxin- and cuspidatol-related eremophilane sesquiterpenes from *Penicillium roqueforti*, *J. Nat. Prod.* **70**, 121-123.
- [5] L.-H. Meng, X.-M. Li, C.-T. Lv, C.-S. Li, G.-M. Xu, C.-G. Huang and B.-G. Wang (2013). Sulfurcontaining cytotoxic curvularin macrolides from *Penicillium sumatrense* MA-92, a fungus obtained from the rhizosphere of the mangrove *Lumnitzera racemosa*, *J. Nat. Prod.* **76**, 2145-2149.
- [6] E. Adelin, M.T. Martin, M.F. Bricot, S. Cortial, P.Retailleau and Ouazzani (2012). Biotransformation of natural compounds: Unexpected thio conjugation of Sch-642305 with 3-mercaptolactate catalyzed by Aspergillus niger ATCC 16404 cells, *Phytochemistry* 84, 135-140.
- [7] Y. F. Wang, X. Y. Wang, G. F. Lai, C. H. Lu and S. D. Luo (2007). Three new sesquiterpenoids from the aerial parts of *Homalomena occulta, Chem. Biodivers.* **4**, 925–931.
- [8] M. Peuchmaur, N. Saidani, C. Botte, E. Marechal, H. Vial and Y. S. Wong (2008). Enhanced Antimalarial activity of novel synthetic aculeatin derivatives, *J. Med. Chem.* **51**, 4870-4873.
- [9] L. Zhang, B. Bai, X. Liu, Y. Wang, M. Li and D. Zhao. α-Glucosidase inhibitors from *Chinese Yam* (Dioscorea opposita Thunb.), *Food Chem*.2011, **126**, 203–206.
- [10] Nagasawa, A. Isogai, A. Suzuki and S. Tamura (1979). ¹³C NMR spectra and streochemistry of isoechinulins A, B and C, *Agric. Biol. Chem.* 1979, **43**, 1759–1763.
- [11] L. L. Ricardo, D. I. Bernardi, G. C. Mantovanelli, B. P. Moreno, M. S. Mito, A. A. Silva, R. Silverio de Oliveira, E. L. Ishii- Iwamoto, M. H. Sarragiotto and D. C. Baldoqui (2018). Phytochemical investigation and phytotoxic activity of aerial parts of oilseed radish (*Raphanus sativus* var. oleifer Stokes), *Biochem. Syst. Ecol.* 78, 52-58.
- [12] R. A. El-Shiekh, D. A. Al-Mahdy, M. S. Hifnawy, T. Tzanova, E. Evian-Bana, S. Philippot, D. Bagrel and E. A. Abdelsattar (2017). Chemical and biological investigation of *Ochrosia elliptica* in Egypt, *Rec. Nat. Prod.* 11, 552-557.

- [13] V. R. Hegde, S. Borges, M. Patel, P. R. Das, B. Wu, V. P. Gullo and T. M. Chan (2010). New potential antitumor compounds from the plant *Aristolochia manshuriensis* as inhibitors of the CDK2 enzyme. *Bioorg. Med. Chem. Lett.* 20, 1344–1346.
- [14] M.N. Azmi, N.A. Saad, M.H.Abu Bakar, M.T.C. Omar, A.N. Aziz, H.A. Wahab, S. Siddiq, M.I, Choudhary, M. Litaudon and K. Awang (2021). Cyclic polyketides with alpha-glucosidase inhibitory activity from *Endiandra kingiana* gamble and molecular docking study, *Rec.Nat.Prod.* 15, 414-419.

