

Rec. Nat. Prod. X:X (202X) XX-XX

records of natural products

## A New Lignan with Potential Anti-inflammatory Activity from

## Notopterygium incisum

# Li-Lian Zhao <sup>D</sup><sup>1</sup>, Su Hu <sup>D</sup><sup>1</sup>, Xin-Yu Li <sup>D</sup><sup>1</sup>, Yun Deng <sup>D</sup><sup>1</sup>, Li-Jun Huang <sup>D</sup><sup>\*2</sup> and Da-Le Guo <sup>D</sup><sup>\*1</sup>

<sup>1</sup> School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
<sup>2</sup> School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China

(Received May 08, 2025; Revised July 01, 2025; Accepted July 04, 2025)

**Abstract:** *Notopterygium incisum* is widely used in clinical practice because of its complex chemical composition and remarkable pharmacological effects. In this study, a previously undescribed lignan (1) was isolated from *N. incisum*. Its structure was evaluated through examinations of the NMR, HREIMS data and ECD calculation. Compound **1** demonstrated significant anti-inflammatory potential by inhibiting the secretion of nitric oxide (NO) in lipopolysaccharide (LPS)-induced macrophages, with an IC<sub>50</sub> value of 3.57  $\mu$ M.

**Keywords:** *Notopterygium incisum*; lignan; anti-inflammatory activity. © 2025 ACG Publications. All rights reserved.

## **1. Plant Source**

The roots and rhizomes of *Notopterygium incisum* utilized in this study were sourced from Sichuan Neautus Pharmaceutical Co., Ltd. The authenticity of the plant material was validated by Prof. Guang-Zhi Wang, who is affiliated with Chengdu University of Traditional Chinese Medicine. Moreover, the specimen of *N. incium* currently preserved in the plant specimen chamber with a collection number of 20221225/CDCM/SCA at the Herbarium of Chengdu University of Traditional Chinese Medicine.

## 2. Previous Studies

In our continuous pursuit to investigate natural products featuring novel structures and antiinflammatory properties sourced from traditional Chinese medicines in southwestern China, a chemical analysis of *N. incisum* resulted in the extraction of several previously uncharacterized coumarins [1-3] exhibiting anti-inflammatory effects.

<sup>\*</sup> Corresponding authors: E-Mail: guodale@cdutcm.edu.cn

#### A new lignan with potential anti-inflammatory activity

### 3. Present Study

A combined weight of 30 kg of roots and rhizomes from N. incisum was transformed into a powder, then extracted with 95% ethanol, resulting in the production of dried extract. Following this, this extract was then dissolved by distilled water and fractionated by a column D101 macroporous resin measuring  $(80 \times 1200 \text{ mm})$  employing a methanol/water gradient. The gradient consisted of varying ratios, specifically starting with a composition of 0% methanol to 100% water, transitioning to 30% methanol and 70% water, followed by 60% methanol and 40% water, and finally reaching a concentration of 95% methanol and 5% water. The fraction eluted with 60% methanol, weighing 101.3 g, underwent silica gel column chromatography. A gradient of petroleum ether and acetone was employed, gradually changing from a 100:0 to a 50:50 volume-to-volume ratio. This process resulted in the collection of eight distinct fractions, labeled Fr.1 to Fr.8. Fr.3, which weighed 18.51 g, underwent further separation using a silica gel column. In this step, petroleum ether and ethyl acetate were used as mobile phases, also adjusted from a 100:0 to a 50:50 volume-to-volume ratio. This further purification resulted in the formation of sixteen sub-fractions (labeled Fr.3.1 to Fr.3.16). Subsequently, Fr.3.6 fractionated using a Sephadex LH-20 column chromatography. The elution process involved a mixture of dichloromethane and methanol in a 50:50 ratio. Five sub-fractions, (labeled Fr.3.6.1 to Fr.3.6.5) were successfully yielded. Fraction 3.6.4 was further purified by semipreparative HPLC utilizing a C18 column (5 $\mu$ m, 10×250mm), and yielded compound 1 (methanolwater: 68:32; 3 mL/min; t<sub>R</sub>: 51.0 min; 4.7 mg). Fr 3.6.1 was further fractionated through semipreparative HPLC with a C18 column (5µm, 10×250mm) and resulted in nine sub-fractions, labeled Fr.3.6.1.1 to Fr.3.6.1.9. Fr.3.6.1.3 was subjected to semi-preparative HPLC with the same C18 column, using a methanol-water mixture at a ratio of 68:32 and a flow rate of 3 mL/min and yield 2.3 mg of compound 2, which eluted at a retention time of 13.0 min. Similarly, Fr.3.6.1.4 was further purified to isolate compound 3 (0.8 mg) at the same methanol-water mixture and flow rate were used, with the compound eluting at a retention time of 18.0 min. Besides, Fr 3.6.2 was refined using semipreparative HPLC on the same C18 column. This process employed a methanol-water mixture at a ratio of 65:35 and a flow rate of 3 mL/min. This refinement led to the isolation of compound 4 (4.0 mg), which eluted at a retention time of 57.0 min, and compound 5 (2.1 mg), which eluted at a retention time of 59.0 min.



Figure 1. The structures of compounds 1-5

*Compound I:* yellow gum;  $[\alpha]_{D}^{20} = +$  9.1 (c = 0.22, MeOH), IR (KBr): 3417, 2920, 2848, 1705, 1629, 1595, 1511, 1427, 1384, 1272, 1152, 1032, 700 cm<sup>-1</sup>; UV (MeOH)  $\lambda_{max}$  203 (5.08), 237 (2.03), 288 (1.16), 327 (1.62) nm; CD (c 1.74, MeOH)  $\lambda_{max}$  ( $\Delta \varepsilon$ ) 204 (20.31), 220 (-3.05), 240 (0.26) nm; HRESIMS *m*/*z* 478.2201 [M+NH<sub>4</sub>]<sup>+</sup> (calcd. 478.2225). For <sup>1</sup>H and <sup>13</sup>C NMR data, see Table 1.

Compound **1** was obtained as a yellow gum. Its molecular formula was confirmed to be  $C_{28}H_{28}O_6$ , by HRESIMS adduct ion peak at m/z 478.2201 [H+HN<sub>4</sub>]<sup>+</sup>. The infrared (IR) spectrum revealed prominent absorption bands at 3417 and 1705 cm<sup>-1</sup>, indicative of hydroxyl and carbonyl

#### Zhao et al., Rec. Nat. Prod. (202X) X:X XX-XX

functional groups, respectively. These findings suggest the presence of these functional groups within the compound's structure. The <sup>1</sup>H NMR spectrum provided further insights into the compound's architecture, displaying characteristic signals that are consistent with a polyaromatic framework. Notably, it revealed ten aromatic protons distributed across three distinct phenyl groups observed at  $\delta_{\rm H}$ 7.32 (H-2", H-6"), 7.26-7.20 (H-3", H-5", H-4"), 6.94 (H-4), 6.91 (H-6), 6.85 (H-5'), 6.72 (H-2'), and 6.70 (H-6'), along with a disubstituted double bond [ $\delta_{\rm H}$  6.23 (H-8), 7.56 (H-7)] and a terminal vinyl group displaying resonances at  $\delta_{\rm H}$  6.27 (H-8'), 4.96 (H-9'a), and 5.23 (H-9'b). Oxygenated functionalities were identified as two methoxy groups at  $\delta_{\rm H}$  3.84 (3-OMe) and 3.91 (4'-OMe), while two methylene groups resonated at  $\delta_{\rm H}$  3.01 (H-7") and 4.41 (H-8"). The <sup>13</sup>C NMR analysis of compound **1** displayed a signal at  $\delta$ 167.3 (C-9) indicative of a carbonyl group. Signals corresponding to twenty *sp*<sup>2</sup>-hybridized carbon atoms, consistent with aromatic and olefinic carbons. Five *sp*<sup>3</sup> hybridized carbon atoms, supporting the presence of methoxy and methylene groups.



Figure 2. The key <sup>1</sup>H-<sup>1</sup>H COSY, HMBC and NOESY correlations of 1

The analysis results from HSQC and HMBC for compound 1 illustrated the existence of three phenyl groups. Among these, one is identified as a tetrasubstituted phenyl, characterized by aromatic protons at  $\delta_{\rm H}$  6.94 (1H, d, J = 2.1 Hz, H-4), 6.91 (1H, d, J = 1.9 Hz, H-6) correlated with carbons at  $\delta_{\rm C}$ 146.5 (C-3), 144.3 (C-4), 134.1 (C-1), 121.3 (C-5), 114.3 (C-6), and 111.3 (C-2). The significant coupling constants observed between H-7" and H-8" indicate the E-configuration of the disubstituted double bond. The HMBC correlations (Figure 2) show the relationships between H-7 and C-1, C-2, C-6, C-9, along with connections between H-8 and C-1 and C-9, developing the initial C6-C3 unit within the lignan framework. A trisubstituted phenyl group exhibiting an ABX coupling system [ $\delta_{\rm H}$  6.85 (d, J = 8.1 Hz, H-5'), 6.72 (d, J = 2.1 Hz, H-2'), 6.70 (dd, J = 8.1, 2.1 Hz, H-6');  $\delta_{\rm C}$  146.8 (C-2'), 145.4 (C-3'), 129.6 (C-5'), 126.3 (C-1'), 123.5 (C-6'), 107.4 (C-4')] was linked to a second C6-C3 moiety via <sup>1</sup>H-<sup>1</sup>H COSY correlations (H-7'/H-8'/H-9') and HMBC correlations (H-7'/C-1', C-2', C-6'). The third substituent, a 2-hydroxyethylphenyl group, displayed aromatic signals at  $\delta_{\rm H}$  7.32 (2H, t, J = 7.3 Hz, H-2", H-6" and 7.26–7.20 (3H, m, H-3", H-5", H-4"), with aliphatic protons at 3.01 (2H, t, J = 7.1 Hz, H-7") and 4.41 (2H, t, J = 7.1 Hz, H-8") correlated to  $\delta_{\rm C}$  138.1 (C-1"), 129.1 (C-3", C-5"), 128.7 (C-2", C-6"), 126.7 (C-4"), 65.0 (C-8"), 35.9 (C-7"). The methoxy group positions were confirmed through HMBC correlations that connected 4'-OMe to C-4' and 3-OMe to C-3. Additionally, NOESY correlations involving 4'-OMe/H-5' and 3-OMe/H-4 were also considered. Key correlations were observed between the proton at position H-8" and the carbon at position C-9. Additionally, interactions between the proton at H-7' and the carbons at positions C-4, C-5, and C-6 as well as the proton at H-7" and the carbon at position C-1", C-2", C-6" provided further structural insights. Hence, the planar structure of compound 1 was established. The absolute configuration was determined to be 7'S. This conclusion was supported by subsequent ECD analyses [4-5], which is illustrated in Figure 3. As reported in the SciFinder database, compound 1 was identified as a new lignan, exhibiting a similarity of 92% with the most comparable compounds.

#### A new lignan with potential anti-inflammatory activity



Figure 3 The experimental ECD spectra and calculated curves of 1

Compounds **2-5** were elucidated to be name Bergaptol[6], name Pabulenol[7], name Notopterol[8], name Notoptol[9] by comparing spectral data in literatures.

In a series of anti-inflammatory assays with dexamethasone (DXM) as positive control, compound **1** demonstrated significant efficacy in reducing inflammatory markers. Specifically, at a concentration of 7.5  $\mu$ M, compound **1** also significantly downregulated key pro-inflammatory gene expression (IL-1 $\beta$  and IL-6) in LPS-stimulated RAW 264.7 macrophages. Besides, it markedly decreased nitric oxide (NO) production with a IC<sub>50</sub> of 3.57  $\mu$ M. These effects are illustrated in Figure 4, highlighting the potential of compound **1** as a promising anti-inflammatory hit-compound.



Figure 4. Cell viability, RT-PCR test results and IC<sub>50</sub> determination for compound 1. A: Cell viability results for compound 1. B: Expression levels of inflammatory cytokines IL-1 $\beta$  for compound 1. C: Expression levels of inflammatory cytokines IL-6 for compound 1. D: IC<sub>50</sub> of Compound 1 for NO production in RAW 264.7 macrophages. Data are expressed as the mean  $\pm$  SD. ####p <0.0001, compared with the normal control group. \*\*\*\*p<0.0001, compared with the LPS group.

| Compound 1 | $\delta_{ m C}$ | $\delta_{\rm H} J ({\rm Hz})$         |
|------------|-----------------|---------------------------------------|
| 1          | 126.3           | -                                     |
| 2          | 146.8           | -                                     |
| 3          | 145.4           | -                                     |
| 4          | 107.4           | 6.94 (d, 2.0)                         |
| 5          | 129.6           | -                                     |
| 6          | 123.5           | 6.91 (d, 2.0)                         |
| 7          | 145.6           | 7.56 (d, 15.8)                        |
| 8          | 115.4           | 6.23 (d, 15.8)                        |
| 9          | 167.3           | -                                     |
| 1'         | 134.1           | -                                     |
| 2'         | 111.3           | 6.72 (d, 2.0)                         |
| 3'         | 146.5           | -                                     |
| 4'         | 144.3           | -                                     |
| 5'         | 121.3           | 6.70 (dd, 8.0, 2.0)                   |
| 6'         | 114.3           | 6.85 (d, 8.0)                         |
| 7'         | 47.3            | 5.05 (d, 6.6)                         |
| 8'         | 139.7           | 6.27 (ddd, 17.0, 10.1, 6.6)           |
| 9'         | 116.6           | 5.23 (dt, 10.1, 1.6), 4.96 (dt, 17.0, |
| 1"         | 138.1           | 1.6)                                  |
| 2", 6"     | 128.7           | -                                     |
| 3", 5"     | 129.1           | 7.32 (t, 7.3)                         |
| 4''        | 126.7           | 7.26-7.20 (m)                         |
| 7"         | 35.9            | 7.26-7.20 (m)                         |
| 8"         | 64.9            | 3.01 (t, 7.2)                         |
| 3-OMe      | 56.1            | 4.41 (t, 7.2)                         |
| 4'-OMe     | 56.3            | 3.84 (s)                              |
| 2-OH       | -               | 3.91 (s)                              |
| 3'-OH      | -               | 5.99 (s)                              |
|            |                 | 5.50 (s)                              |

**Table 1**. The NMR data of compound **1** in  $CDCl_3(\delta \text{ in ppm}, J \text{ in Hz})$ 

### Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (No. 82304887) and Sichuan Science and Technology Program (No. 2024ZYD0116).

## **Supporting Information**

Supporting Information accompanies this paper on <u>https://www.acgpubs.org/journal/records-of-natural-products</u>

ORCID D Li-Lian Zhao: 0009-0002-0560-9205 Su Hu: 0009-0003-2712-0264 Xin-Yu Li: 0009-0007-5865-5762 Yun Deng: 0000-0002-3428-8992 Li-Jun Huang: 0000-0003-0563-6684 Da-Le Guo: 0000-0003-3219-7066

#### A new lignan with potential anti-inflammatory activity

#### References

- [1] X. Y. Huo, M. D. Liu, Y. H. Chen, Y. J. Hu, C. Y. Yan, D. L. Guo, and Y. Deng. (2025). Three new coumarinsfrom *Notopterygium incisum* with potential anti-inflammatory activity, *J. Asian Nat. Prod. Res.* 27, 18–30.
- [2] Y. J. Hu, M. D. Liu, Y. T. Mu, C. C. Li, M. H. Zhao, D. L. Guo, and Y. Deng (2024). Two undescribed coumarins from *Notopterygium Incisum* with anti-inflammatory activity, *Chem. Biodiversity* **21**, e202401093.
- [3] L. S. Jiang, H. X. Li, C. Y. Zhang, Y. T. Mu, M. J. Zhang, Y. J. Hu, and Y. Deng (2025). Bioactive coumarins from *Notopterygium incisum* root: A step toward natural ant-infammatory candidates, *Fitoterapia* 182, 106491.
- [4] H. F. Du, L. Li, Y. H. Zhang, X. Wang, C. Y. Zhou, H. J. Zhu, C. U. Pittman, J. W. Shou, and F. Cao. (2025). The first dimeric indole-deterpenoids from a marine-derived *Penicillium sp.* Fungus and their potential for anti-obsity drugs, *Mar. Life. Sci.Technol.* 7, 120–131.
- [5] Y. Jung, C. Kwon, T. Kim, J. W. Lee, M. K. Shin, and S.H. Shim (2024). Tetramic acid-motif natural products from a marine fungus *Tolypocladium cylindrosporum* FB06 and their anti-Parkinson activities, *Mar. Life Sci. Technol.* **6**, 84–92.
- [6] X. Luo, X. J. Wang, Y. W. Zhao, W. Z. Huang, Z. L. Xu, Z. Z. Wang, and W. Xiao (2016). Chemical constituents from *Notopterygium incisum*, *Zhongcaoyao* 47, 1492-1495.
- [7] Y. B. Jiang, X. L. Lu, Z. Z. Yang, L. Ma, and Y. Y. Ma (2013). Studies on the chemical constituents of Angelica dahurica related to sulfur fumigated, *Zhongguo Shiyan Fangjixue Zazhi* 19, 74-78.
- [8] X. W. Wu, and X. W. Yang (2020). Coumarins from *Notopterygium incisum* and their inhibitory effect against lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells, *Zhongcaoyao* 51, 3383-3392.
- [9] L. M. Li, B. D. Liang, S. W. Yu, and H. D. Sun (2007) Chemical constituents of *Notopterygium incisum*, *Chin. J. Nat. Med.* **5**, 351-354

A C G publications © 2025 ACG Publications