Supporting Information

Rec. Nat. Prod. 12:1 (2018) 40-52

Interactions of bioactive quince (*Cydonia oblonga* Mill.) extract with biomolecules

Paulina Strugała[®]*¹, Sylwia Cyboran-Mikołajczyk^{®1}, Dorota Wyspiańska^{®2}, Anna Sokół-Łętowska^{®2}, Narcyz Piórecki^{®3,4} and Janina Gabrielska^{®1}

 ¹Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
²Department of Fruit, Vegetable and Cereal Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37/41, 51-630 Wrocław, Poland
³Arboretum and Institute of Physiography in Bolestraszyce, 37-700 Przemyśl, Poland
⁴University of Rzeszów, Towarnickiego 3, 35-959 Rzeszów, Poland

S1: Linear range, calibration curve, correlation coefficient -R, Limit of detection- LOD, and limit of quantification- LOQ data for three used standards	3
S2: (-) Epicatechin, 5'-caffeoylquinic acid, and quercetin 3-O-glucoside calibration curve	es 4
S3: UHPLC-MS chromatogram of compounds from quince extract	5
S4: Mass spectra of the ions of neochlorogenic acid	6
S5: Mass spectra of the ions of <i>p</i> -coumaroylquinic acid	7
S6: Mass spectra of the ions of chlorogenic acid	8
S7: Mass spectra of the ions of cryptochlorogenic acid	9
S8: Mass spectra of the ions of caffeoylquinic acid derivatives	10
S9: Mass spectra of the ions of <i>p</i> -coumaric acid derivative	11
S10: Mass spectra of the ions of caffeoylquinic acid derivatives	12
S11: Mass spectra of the ions of caffeoylquinic acid	13
S12: Mass spectra of the ions of <i>p</i> -coumaroylquinic acid	14
S13: Mass spectra of the ions of quercetin - 3- O-glucoside	15
S14: Mass spectra of the ions of catechin	16

^{*}Corresponding author: E-Mail: paulina.strugala@upwr.edu.pl^{; Phone: +48 71 320 51670 Fax: +48 71 320 51670.}

S15: Mass spectra of the ions of procyanidin B2			
S16: Mass spectra of the ions of procyanidin C1	18		
S17: HPLC-DAD chromatogram (360 nm) of compounds from quince extract	19		
S18: HPLC-DAD chromatogram (320 nm) of compounds from quince extract	20		
S19: HPLC-DAD chromatogram (280 nm) of compounds from quince extract	21		

Standard	Linear range (µg/mL)	λ_{det}^{1} (nm)	Calibration curve	Correlation coefficient <i>R</i>	LOD (µg/mL)	LOQ (µg/mL)
5'-Caffeoylquinic acid	20-300	320	y=1.083x-0.931 ²	0.9999	0.060	0.199
Quercetin 3-O-glucoside	20 - 150	360	y=0.606x-1.687	0.9995	0.060	0.185
(-) Epicatechin	20-200	280	y=0.233x-0.077	0.9999	0.464	1.532

 $^{1}\lambda_{det}$ detection wavelength in quantification process, ^{2}y - peak area, x - concentration

S1: Linear range, calibration curve, correlation coefficient -R, limit of detection- LOD, and limit of quantification- LOQ data for three used standards.

S2: (-) Epicatechin, 5'-caffeoylquinic acid and quercetin 3-*O*-glucoside calibration curves.

S3: UHPLC-MS chromatogram of compounds from quince extract. Numbers in chromatogram refer to compounds listed in Table 1 in manuscript.

S4: Mass spectra of the ions of neochlorogenic acid (Peak 1) in negative mode before and after fragmentation.

S5: Mass spectra of the ions of *p*-coumaroylquinic acid (Peak 2) in negative mode before and after fragmentation.

S6: Mass spectra of the ions of chlorogenic acid (Peak 3) in negative mode before and after fragmentation.

S7: Mass spectra of the ions of cryptochlorogenic acid (Peak 4) in negative mode before and after fragmentation.

S8: Mass spectra of the ions of caffeoylquinic acid derivatives (Peak 5) in negative mode before and after fragmentation.

S9: Mass spectra of the ions of *p*-coumaric acid derivative (Peak 6) in negative mode before and after fragmentation.

S10: Mass spectra of the ions of caffeoylquinic acid derivatives (peak 7) in negative mode before and after fragmentation.

S11: Mass spectra of the ions of caffeoylquinic acid (peak 8) in negative mode before and after fragmentation.

S12: Mass spectra of the ions of quercetin - 3- *O*-rutinoside (Peak 9) in negative mode before and after fragmentation.

S13: Mass spectra of the ions of quercetin - 3- *O*-glucoside (Peak 10) in negative mode before and after fragmentation.

S14: Mass spectra of the ions of catechin (Peak 11) in negative mode before and after fragmentation.

S15: Mass spectra of the ions of procyanidin B2 (Peak 12) in negative mode before and after fragmentation.

S16: Mass spectra of the ions of procyanidin C1(Peak 13) in negative mode before and after fragmentation.

S17: HPLC-DAD chromatogram (360 nm) of compounds from quince extract. The peak number corresponds to the numbet in Table 1 in manuscript.

S18 : HPLC-DAD chromatogram (320 nm) of compounds from quince extract. The peak number corresponds to the number in Table 1 in manuscript.

S19: HPLC-DAD chromatogram (280 nm) of compounds from quince extract. The peak number corresponds to the numbet in Table 1 in manuscript.