Supporting information

Rec. Nat. Prod. 7:2 (2013) 129-132

Chemical constituents of Canarium subulatum and their

anti-herpetic and DPPH free radical scavenging properties

Boonchoo Sritularak ¹, Nopporn Boonplod ², Vimolmas Lipipun³ and Kittisak Likhitwitayawuid ¹*

¹Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

² Faculty of Agricultural Production, Maejo University, Chiangmai 50290, Thailand

³ Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

Table of Contents	Page
Experimental details	2
Assay of biological activities	5
Anti-herpetic activity	5
DPPH radical scavenging method	5

Experimental

Instruments

Mass spectra were recorded on a Micromass LCT mass spectrometer (ESI-MS) or a GCMS-QP5050A (EI-MS). NMR spectra were recorded on a Bruker Avance DPX-300 FT-NMR spectrometer or a Varian Unity INOVA-500 NMR spectrometer. Microtiter plate reading was performed on a Perkin-Elmer Victor^{3TM} 1420 multilabel counter. Vaccuum-liquid chromatography (VLC) and column chromatography (CC) were performed on silica gel 60 (Merck, Kieselgel 60, 70-320 mesh) and silica gel 60 (Merck, Kieselgel 60, 230-400 mesh), respectively. Size-exclusion chromatography was conducted on Sephadex LH-20 (25-100 μ m, Pharmacia Fine Chemical Co. Ltd.).

Identification of compounds

Compound 1 (β -amyrin)

White powder, $C_{30}H_{50}O$, EI-MS: 426 (M⁺ 12), 218 (86), 203 (40), 69 (80). ¹H NMR (500 MHz, CDCl₃) δ : 3.21 (1H, m, H-3), 5.16 (1H, br s, H-12), 0.97 (3H, s, H₃-23), 0.78 (3H, s, H₃-24), 0.93 (3H, s, H₃-25), 0.99 (3H, s, H₃-26), 1.11 (3H, s, H₃-27), 0.81 (3H, s, H₃-28), 0.85 (6H, s, H₃-29, H₃-30). ¹³C NMR (125 MHz, CDCl₃) δ : 38.7 (C-1), 27.3 (C-2), 79.0 (C-3), 38.8 (C-4), 55.2 (C-5), 18.4 (C-6), 32.7 (C-7), 38.7 (C-8), 47.7 (C-9), 37.1 (C-10), 23.5 (C-11), 121.7 (C-12), 145.1 (C-13), 41.7 (C-14), 26.2 (C-15), 27.0 (C-16), 32.5 (C-17), 47.3 (C-18), 46.8 (C-19), 31.1 (C-20), 34.7 (C-21), 37.0 (C-22), 28.1 (C-23), 15.5 (C-24), 15.6 (C-25), 16.9 (C-26), 26.0 (C-27), 28.4 (C-28), 33.3 (C-29), 23.7 (C-30).

Compound 2 ((–)-Cubebin)

This compound was a mixture of α -isomer and β -isomer. White powder, $C_{20}H_{20}O_6$, EI-MS: 356 (M⁺ 32), 338 (12), 203 (15), 135 (100). ¹H NMR (500 MHz, CDCl₃) & 2.40-2.76 (5H, m, H₂-7, H-8, H₂-7'), 2.14 (1H, m, H-8' α), 1.99 (1H, m, H-8' β), 5.20 (1H, br s, H-9' α), 5.21 (1H, d, J = 4.8 Hz, H-9' β), 3.79 (1H, t, J = 8.4 Hz, H-9_a α), 3.57 (1H, t, J = 8.4 Hz, H-9_a β), 3.98 (1H, t, J = 8.4 Hz, H-9_b α), 4.08 (1H, t, J = 8.4 Hz, H-9_b β), 5.89 (2H, s, OCH₂O), 5.90 (2H, s, OCH₂O), 6.45-6.72 (6H, overlapped, aromatic protons). ¹³C NMR (125 MHz, CDCl₃) & 134.1 (C-1 α), 133.9 (C-1 β), 108.1 (C-2 α), 108.0 (C-2 β), 147.5 (C-3 α), 147.6 (C-3 β), 145.9 (C-4 α), 145.7 (C-4 β), 108.9 (C-5 α), 109.2 (C-5 β), 121.4 (C-6 α), 121.3 (C-6 β), 38.4 (C-7 α), 38.9 (C-7 β), 45.9 (C-8 α), 42.9 (C-8 β), 72.2 (C-9 α), 72.6 (C-9 β), 133.3 (C-1' α), 134.5 (C-1' β), 108.2 (C-2' α), 108.1 (C-2' β), 147.5 (C-3' α), 145.9 (C-4' α),

145.7 (C-4' β), 109.3 (C-5' α), 109.2 (C-5' β), 121.7 (C-6' α), 121.6 (C-6' β), 39.2 (C-7' α), 33.6 (C-7' β), 53.1 (C-8' α), 52.0 (C-8' β), 103.4 (C-9' α), 98.8 (C-9' β), 100.8 (O<u>C</u>H₂O).

Compound 3 (Scopoletin)

White powder, $C_{10}H_8O_4$, EI-MS: 192 (M⁺ 100), 177 (59), 164 (29), 149 (43). ¹H NMR (300 MHz, CDCl₃) δ : 6.26 (1H, d, J = 9.3 Hz, H-3), 7.60 (1H, d, J = 9.3 Hz, H-4), 6.82 (1H, s, H-5), 6.90 (1H, s, H-8), 3.93 (3H, s, MeO-6). ¹³C NMR (75 MHz, CDCl₃) δ : 161.4 (C-2), 113.4 (C-3), 143.3 (C-4), 107.5 (C-5), 144.0 (C-6), 150.2 (C-7), 103.2 (C-8), 150.2 (C-9), 111.5 (C-10), 56.4 (MeO-6).

Compound 4 (3,4-Dihydroxybenzoic acid)

White powder, $C_7H_6O_4$, EI-MS: 154 (M⁺ 100), 137 (84), 109 (19). ¹H NMR (300 MHz, acetone- d_6) δ : 7.53 (1H, br s, H-2), 6.90 (1H, d, J = 8.1 Hz, H-5), 7.48 (1H, br d, J = 8.1 Hz, H-6). ¹³C NMR (75 MHz, acetone- d_6) δ : 122.7 (C-1), 115.2 (C-2), 145.2 (C-3), 150.8 (C-4), 117.0 (C-5), 123.5 (C-6), 168.0 (<u>C</u>OOH).

Compound 5 (3,3'-di-*O*-methylellagic acid-4'-*O*-α-L-rhamnopyranoside)

White powder, $C_{22}H_{20}O_{12}$, ESI-MS *m/z* 499 [M+Na]⁺. ¹H NMR (500 MHz, DMSO-*d*₆) δ : 7.49 (1H, s, H-5), 7.76 (1H, s, H-5'), 4.04 (3H, s, MeO-3), 4.05 (3H, s, MeO-3'), 5.55 (1H, d, *J* = 1.5 Hz, Rha-H-1), 3.95 (1H, dd, *J* = 1.5, 3.5 Hz, Rha-H-2), 3.70 (1H, dd, *J* = 3.5, 9.0 Hz, Rha-H-3), 3.33 (1H, t, *J* = 9.0 Hz, Rha-H-4), 3.51 (1H, dd, *J* = 6.5, 9.0 Hz, Rha-H-5), 1.12 (3H, d, *J* = 6.5 Hz, Rha-H₃-6). ¹³C NMR (125 MHz, DMSO-*d*₆) δ : 110.7 (C-1), 141.5 (C-2), 140.2 (C-3), 153.2 (C-4), 111.7 (C-5), 112.6 (C-6), 158.2 (C-7), 114.1 (C-1'), 140.9 (C-2'), 141.8 (C-3'), 150.2 (C-4'), 111.6 (C-5'), 111.8 (C-6'), 158.4 (C-7'), 61.6 (MeO-3), 60.9 (MeO-3'), 99.8 (Rha-C-1), 70.0 (Rha-C-2), 70.4 (Rha-C-3), 71.5 (Rha-C-4), 70.3 (Rha-C-5), 17.9 (Rha-C-6).

Compound 6 (3,3'-di-*O*-methylellagic acid-4'-O- β -D-glucopyranoside)

White powder, $C_{22}H_{20}O_{13}$, ESI-MS m/z 515 $[M+Na]^+$. ¹H NMR (300 MHz, DMSO- d_6) δ : 7.50 (1H, s, H-5), 7.80 (1H, s, H-5'), 4.04 (3H, s, MeO-3), 4.07 (3H, s, MeO-3'), 5.14 (1H, d, J = 6.9 Hz, Glc-H-1), 3.10-3.70 (6H, overlapped, Glc-H-2-H-6). ¹³C NMR (75 MHz, DMSO- d_6) δ : 111.9 (C-1), 140.8 (C-2), 140.5 (C-3), 151.3 (C-4), 112.0 (C-5), 112.8 (C-6), 158.5 (C-7), 114.3 (C-1'), 141.7 (C-2'), 141.8 (C-3'), 154.2 (C-4'), 112.8 (C-5'), 112.9 (C-6'), 158.5 (C-7'), 60.8 (MeO-3), 61.6 (MeO-3'), 101.3 (Glc-C-1), 73.4 (Glc-C-2), 77.3 (Glc-C-3), 69.6 (Glc-C-4), 76.5 (Glc-C-5), 60.6 (Glc-C-6).

Compound 7 (3-*O*-methylellagic acid-4'-O- α -L-arabinofuranoside)

White powder, $C_{20}H_{16}O_{12}$, HR-ESI-MS *m/z* 471.0533 [M+Na]⁺ (calcd. for $C_{20}H_{16}O_{12}Na$ 471.0539). ¹H NMR (500 MHz, DMSO-*d*₆) &: 7.51 (1H, s, H-5), 7.65 (1H, s, H-5'), 4.02 (3H, s, MeO-3), 5.59 (1H, d, *J* = 1.5 Hz, Ara-H-1), 4.27 (1H, dd, *J* = 1.5, 4.0 Hz, Ara-H-2), 3.82 (1H, dd, *J* = 4.0, 6.0 Hz, Ara-H-3), 3.95 (1H, dt, *J* = 3.0, 6.0, 7.0 Hz, Ara-H-4), 3.46 (1H, dd, *J* = 7.0, 11.0 Hz, Ara-H_a-5), 3.56 (1H, dd, *J* = 3.0, 11.0 Hz, Ara-H_b-5). ¹³C NMR (125 MHz, DMSO-*d*₆) &: 111.7 (C-1), 142.0 (C-2), 140.0 (C-3), 152.5 (C-4), 111.2 (C-5), 113.2 (C-6), 158.8 (C-7), 114.6 (C-1'), 137.0 (C-2'), 136.3 (C-3'), 146.9 (C-4'), 112.7 (C-5'), 113.2 (C-6'), 159.0 (C-7'), 60.9 (MeO-3), 107.7 (Ara-C-1), 81.3 (Ara-C-2), 76.6 (Ara-C-3), 86.1 (Ara-C-4), 61.1 (Ara-C-5).

Compound 8 (Scopolin)

White powder, $C_{16}H_{18}O_9$, ESI-MS *m/z* 355 [M+H]⁺. ¹H NMR (300 MHz, MeOH-*d*₄) δ : 6.31 (1H, d, *J* = 9.6 Hz, H-3), 7.90 (1H, d, *J* = 9.6 Hz, H-4), 7.20 (1H, s, H-5), 7.17 (1H, s, H-8), 5.07 (1H, d, *J* = 6.9 Hz, Glc-H-1), 3.37-3.92 (6H, overlapped, Glc-H-2-H-6). ¹³C NMR (75 MHz, MeOH-*d*₄) δ : 163.5 (C-2), 110.8 (C-3), 145.6 (C-4), 115.6 (C-5), 148.3 (C-6), 151.7 (C-7), 105.3 (C-8), 150.7 (C-9), 109.9 (C-10), 56.7 (MeO-6), 102.1 (Glc-C-1), 74.7 (Glc-C-2), 78.4 (Glc-C-3), 71.2 (Glc-C-4), 77.8 (Glc-C-5), 62.4 (Glc-C-6).

Compound 9 (3-*O*-methylellagic acid-4'- O- β -D-xylopyranoside)

White powder, $C_{20}H_{16}O_{12}$, ESI-MS *m/z* 449 [M+H]⁺. ¹H NMR (300 MHz, DMSO-*d*₆) δ : 7.51 (1H, s, H-5), 7.63 (1H, s, H-5'), 4.90 (1H, d, *J* = 7.2 Hz, Xly-H-1), 3.30-3.84 (5H, overlapped, Xyl-H-2-H-5). ¹³C NMR (75 MHz, DMSO-*d*₆) δ : 114.9 (C-1), 140.0 (C-2), 135.9 (C-3), 147.5 (C-4), 111.5 (C-5), 111.6 (C-6), 158.8 (C-7), 113.3 (C-1'), 142.0 (C-2'), 141.0 (C-3'), 152.6 (C-4'), 111.3 (C-5'), 111.6 (C-6'), 158.9 (C-7'), 103.4 (Xyl-C-1), 73.1 (Xyl-C-2), 75.8 (Xyl-C-3), 69.3 (Xyl-C-4), 66.0 (Xyl-C-5).

Assay of biological activities

Anti-herpetic activity

Antiviral activity against HSV-1 (Strain KOS) was determined using the plaque reduction method. Briefly, virus (30 PFU/25 μ L) was mixed with complete medium (25 μ L) containing various concentrations of test compound and then incubated at 37 °C for 1 h. After incubation, the mixtures were added to Vero cells (6 × 10⁵ cells/well) in 96-well microtiter plates and incubated at 37 °C for 2 h. The overlay medium containing the various concentrations of test compound was added to the Vero cells and incubated at 37 °C in humidified CO₂ incubator for 2 days. Then, virus growth inhibition was evaluated by counting the virus plaque forming on Vero cells compared with the controls. The cells also were stained with 1% crystal violet in 10% formalin for 1 h. The percent plaque inhibition was determined. Acyclovir was used as positive control.

DPPH radical scavenging method

The free radical scavenging effect of the samples was assessed by measuring their ability to decolor a methanolic solution of 1,1,-diphenyl-2-picrylhydrazyl radical (DPPH, Sigma). Briefly, test samples were initially prepared as a solution in EtOH (1000 μ g/ml). Each compound was first tested at the concentration of 100 μ g/ml. An IC₅₀ value was determined if the compound showed more than 50% inhibition. For IC₅₀ analysis, two fold serial dilutions were performed to give seven concentrations. The test was done by addition of the sample solution (20 μ l) to the solution of 50 μ M DPPH in EtOH (180 μ l) in a 96-well microtiter plate. The reaction mixture was incubated at room temperature for 30 min, and then its absorbance at 510 nm was measured with a microplate reader. Quercetin (Sigma) was used as positive control.