Supporting Information

Bioorg. Med. Chem. Rep. 1:1 (2018) 6-15

The synthesis of two novel bicyclic haloketones and

measurement of their biological activity

Esen Yıldız Bekfelavi¹, Pınar Küce Çevik², Özgür Yılmaz¹,

Nermin Şimşek Kuş¹*, Gökhan Coral³ and Ayla Çelik²

¹Department of Chemistry, Faculty of Arts and Sciences, Mersin University, 33343, Mersin, Türkiye

²Department of Biology, Faculty of Arts and Sciences, Mersin University, 33343, Mersin, Türkiye ³Department of Biotechnology, Faculty of Arts and Sciences, Mersin University, 33343, Mersin, Türkiye

Table of Contents	Page
Figure S1. ¹ H NMR spectrum of compound 7	2
Figure S2. ¹³ C NMR spectrum of compound 7	3
Figure S3. ¹ H NMR spectrum of compound 8	4
Figure S4. ¹³ C NMR spectrum of compound 8	5
Figure S5. ¹ H NMR Spectrum of compound 9	6
Figure S6. ¹³ C NMR Spectrum of compound 9	7
Figure S7. ¹ H NMR spectrum of compound 10b	8
Figure S8. ¹³ C NMR spectrum of compound 10b	9
Figure S9. Inhibitory effects of tested compounds against bacterial strains	10-12

δ_H (400 MHz, CDCl₃): 5.8 (m, 2H), 3.98 (ddd, *J*= 10.6, *J*= 6.8, *J*= 2.4 Hz, 1H), 3.2 ppm (ddd, *J*= 8 Hz, *J*= 2 Hz, 1H), 2.6-2 (m, 4H).

Figure S2. ¹³C NMR spectrum of compound 7

Figure S3. ¹H NMR spectrum of compound 8

Figure S4. ¹³C NMR spectrum of compound 8

Figure S5. ¹H NMR Spectrum of compound 9

Figure S6. ¹³C NMR Spectrum of compound 9

 $δ_{\rm H}$ (400 MHz, CDCl₃): 4.22 (m, 2H), 3.41 (m, 1H), 3.16 (ddd, J= 16.7, 8.8, 3.1 Hz, 1H), 2.84 (m, 2H), 2.69 (dt, J= 15.1, 3.7 Hz, 1H), 2.61 (m, 1H), 2.09 (dt, J= 15.1, 8.8 Hz, 1H), 1.84 (m, 1H)

Figure S7. ¹H NMR spectrum of compound 10b

Figure S8. ¹³C NMR spectrum of compound 10b

Figure S9. Inhibitory effects of tested compounds against bacterial strains