Supporting Information

Org. Commun. 12:3 (2019) 121-131

Synthesis of novel 3,4-fused pyrazolidinone γ-lactam bicyclic moieties from 2,3-dioxo-4-carboxy-5-(substituted)pyrrolidines

FatinNur Ain Abdul Rashid¹, MohdFazli Mohammat^{2*},

Zurina Shaameri² and Ahmad Sazali Hamzah²

¹Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

²Organic Synthesis Research Laboratory, Institute of Science (I.O.S), Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia

Table of content	Page
S1: Experimental Procedure for 1a-e	3
Figure S1: ¹ H-NMR spectrum of compound 2a	4
Figure S2: ¹ H-NMR spectrum of compound 2b	5
Figure S3: ¹³ C-NMR spectrum of compound 2b	6
Figure S4: ¹ H-NMR spectrum of compound 2d	7
Figure S5: ¹ H-NMR spectrum of compound 3a	8
Figure S6: ¹³ C-NMR spectrum of compound 3a	9
Figure S7: ¹ H-NMR spectrum of compound 3b	10
Figure S8: ¹³ C-NMR spectrum of compound 3b	11
Figure S9. ¹ H-NMR spectrum of compound 3c	12
Figure S10: ¹³ C-NMR spectrum of compound 3c	13
Figure S11: ¹ H-NMR spectrum of compound 3c'	14
Figure S12: ¹³ C-NMR spectrum of compound 3c'	15
Figure S13: ¹ H-NMR spectrum of compound 3d	16
Figure S14: ¹³ C-NMR spectrum of compound 3d	17
Figure S15: ¹ H-NMR spectrum of compound 3d'	18
Figure S16: ¹³ C-NMR spectrum of compound 3d'	19
Figure S17: ¹ H-NMR spectrum of compound 3e	20
Figure S18: ¹³ C-NMR spectrum of compound 3e	21
Figure S19: ¹ H-NMR spectrum of compound 3e'	22
Figure S20: ¹³ C-NMR spectrum of compound 3e'	23
Figure S21: ¹ H-NMR spectrum of compound 4b	24

Figure S22: ¹³ C-NMR spectrum of compound 4b	25
Figure S23: ¹ H-NMR spectrum of compound 4c	26
Figure S24: ¹³ C-NMR spectrum of compound 4c	27
Figure S25: ¹ H-NMR spectrum of compound 4d	28
Figure S26: ¹ H-NMR spectrum of compound 4d	29
Figure S27: ¹ H-NMR spectrum of compound 4e	30
Figure S28: ¹³ C-NMR spectrum of compound 4e	31
Figure S29: ¹³ C-NMR spectrum of compound 5e	32
Figure S30: ¹³ C-NMR spectrum of compound 5e	33

^{*} Corresponding author: E-mail: mohdfazli@uitm.edu.my

S1: Experimental Procedure

General procedure for the synthesis of 2,3-dioxo-4-carboethoxy-5-(substituted)pyrrolidines (1a-e)^{6,7}: An equimolar amount of sodium diethyl oxalacetate (47.62 mmol), 40% methylamine in water (47.62 mmol) and propianaldehyde (47.62 mmol) was heated under reflux in 100 mL EtOH for 1 hour. After cooling, the mixture was poured into ice cooled water and acidified with concentrated hydrochloric acid. The precipitate obtained was filtered out, washed with water and diethyl ether to afford the product 1a-e.

Ethyl 4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate (1a): Yield: 43%; m.p. 138-139°C; IR (KBr) 1692, 1654 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 4.85 (s, 2H, CH₂), 4.26 (q, J = 7.0 Hz, 2H, OCH₂), 1.29 (t, J = 7.1 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 169.01, 162.11, 147.88, 114.63, 66.86, 60.80, 13.02 ppm; CHN: Found C, 49.10; H, 5.26; N, 8.05 requires C, 49.12; H, 5.30; N, 8.18 %; LCMS (ESI): calculated for C₇H₉NO₄ 365.10 [2M+Na]⁺, found 365.10.

Ethyl 4-hydroxy-1-methyl-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate (**1b**): Yield: 45%; m.p. 136-137°C; IR (KBr) 1692, 1658 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 4.24 (q, J = 7.2 Hz, 2H, OCH₂), 4.00 (s, 2H, CH₂), 3.04 (s, 3H, NCH₃), 1.29 (t, J = 7.1 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 169.10, 165.65, 147.84, 114.64, 66.74, 60.22, 28.69, 13.18 ppm; CHN: Found C, 51.53; H, 5.97; N, 7.25 requires C, 51.89; H, 5.99; N, 7.56 %; LCMS (ESI): calculated for C₈H₁₁NO₄ 393.14 [2M+Na]⁺, found 393.10.

Ethyl 4-hydroxy-1,2-dimethyl-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate (1c): Yield: 68%; m.p. 104-105°C; IR (KBr) 1695, 1658 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 4.33-4.21 (m, 2H, OCH₂), 4.13 (q, J = 6.6 Hz, 1H, CH-5), 2.98 (s, 3H, NCH₃), 1.38 (d, J = 6.9 Hz, 3H, CH₃), 1.30 (t, J = 7.1 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 164.68, 163.79, 154.66, 112.98, 60.24, 54.86, 26.12, 16.09, 13.32 ppm; CHN: Found C, 54.16; H, 6.66; N, 7.10 requires C, 54.26; H, 6.58; N, 7.03 %; LCMS (ESI): calculated for C₉H₁₃NO₄ 421.16 [2M+Na]⁺, found 421.10.

Ethyl 2-*ethyl*-4-*hydroxy*-1-*methyl*-5-*oxo*-2,5-*dihydro*-1*H*-*pyrrole*-3-*carboxylate* (**1***d*): Yield: 62%; m.p. 106-107°C; IR (KBr) 1682, 1681 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 4.31-4.22 (m, 3H, OCH₂ & CH-5), 2.94 (s, 3H, NCH₃), 2.18-2.07 (m, 1H, CH₂), 2.00-1.89 (m, 1H, CH₂), 1.29 (t, J = 7.1 Hz, 3H, CH₃), 0.50 (t, J = 7.5 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 165.46, 163.73, 155.39, 110.01, 60.24, 58.56, 25.87, 20.71, 13.06, 4.29 ppm; CHN: Found C, 56.03; H, 7.16; N, 6.72 requires C, 56.33; H, 7.09; N, 6.57 %; LCMS (ESI): calculated for C₁₀H₁₅NO₄ 449.20 [2M+Na]⁺, found 449.20.

Ethyl 4-hydroxy-2-(4-methoxyphenyl)-1-methyl-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate (1e): Yield: 47%; m.p. 153-154°C; IR (KBr) 1675, 1612 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 7.08 (d, J = 8.7 Hz, 2H, CHAr), 6.89 (d, J = 8.7 Hz, 2H, CHAr), 5.07 (s, 1H, CH-5), 4.11-4.00 (m, 2H, OCH₂), 3.76 (s, 3H, OCH₃), 2.72 (s, 3H, NCH₃), 1.07 (t, J = 7.1 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 165.06, 163.29, 160.08, 150.45, 128.62, 126.89, 113.84, 112.68, 62.60, 59.99, 54.57, 26.62, 13.25 ppm; CHN: Found C, 60.10; H, 5.81; N, 4.72 requires C, 61.85; H, 5.88; N, 4.81 %; LCMS (ESI): calculated for C₁₅H₁₇NO₅ 605.22 [2M+Na]⁺, found 605.20.

Figure S1: ¹H-NMR spectrum of compound 2a

Figure S2: ¹H-NMR spectrum of compound 2b

Figure S3: ¹³C-NMR spectrum of compound 2b

Figure S4: ¹H-NMR spectrum of compound 2d

Figure S5: ¹H-NMR spectrum of compound 3a

Figure S6: ¹³C-NMR spectrum of compound 3a

Figure S7: ¹H-NMR spectrum of compound 3b

Figure S8: ¹³C-NMR spectrum of compound 3b

Figure S9: ¹H-NMR spectrum of compound 3c

Figure S10: ¹³C-NMR spectrum of compound 3c

Figure S11: ¹H-NMR spectrum of compound 3c'

Figure S12: ¹³C-NMR spectrum of compound 3c'

Figure S13: ¹H-NMR spectrum of compound 3d

Figure S14: ¹³C-NMR spectrum of compound 3d

Figure S 15: ¹H-NMR spectrum of compound 3d'

Figure S 16: ¹³C-NMR spectrum of compound 3d'

Figure S 17: ¹H-NMR spectrum of compound 3e

Figure S18: ¹³C-NMR spectrum of compound 3e

Figure S19: ¹H-NMR spectrum of compound 3e'

Figure S20: ¹³C-NMR spectrum of compound 3e'

Figure S21: ¹H-NMR spectrum of compound 4b

Figure S22: ¹³C-NMR spectrum of compound 4b

Figure S24: ¹³C-NMR spectrum of compound 4c

Figure S25: ¹H-NMR spectrum of compound 4d

Figure S26: ¹³C-NMR spectrum of compound 4d

Figure S27: ¹H-NMR spectrum of compound 4e

Figure S28: ¹³C-NMR spectrum of compound 4e

Figure S30: ¹³C-NMR spectrum of compound 5e